
A Platform-Independent Software-Intensive Workflow Modeling Language 
And An Open-Source Visual Programming Tool
A Bottom-Up Approach Using Ontology Integration Of Industrial Workflow Engines

Dr. Yong-Jun Shin, Electronics and Telecommunications Research Institute (ETRI), Daejeon, Republic of Korea

yjshin@etri.re.kr

Dr. Wilfrid Utz, OMiLAB NPO, Berlin, Germany

Wilfrid.utz@omilab.org

SAC 2025 - Programming Language

April 3, 2025



Outline

2

1. Introduction

2. Workflow modeling language and Tool

3. Evaluation

4. Conclusion



3

Introduction

A Platform-Independent Software-Intensive Workflow Modeling Language And An Open-Source Visual Programming Tool

• Workflow engines and workflow software specifications

• Necessity of platform-independent visual language for workflow software



Software-intensive Workflows

• Workflow is an effective tool to decompose and manage complex services 
(e.g., AI-enabled services, MLOps)
• Automated execution, periodic execution, auto-repair, regular report, etc.

4

Cooperating tasks 
using heterogeneous platforms, libraries, etc. 

Orchestrating workflow of independent tasks



Workflow Specification of Industrial Workflow Engines

• Many industrial platforms provides code-based specification and automated 
execution of workflow services based on their own grammars.

5

Script_A.py Script_B.py

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
generateName: sequential-pipeline-

spec:
entrypoint: sequential-steps
templates:
- name: sequential-steps
steps:
- - name: step-a

template: run-script
arguments:
parameters:
- name: script
value: "script_A.py"

- - name: step-b
template: run-script
arguments:
parameters:
- name: script
value: "script_B.py"

- name: run-script
inputs:
parameters:
- name: script

container:
image: python:3.9
command: ["python"]
args: ["{{inputs.parameters.script}}"]

from airflow import DAG
from airflow.operators.bash import BashOperat
or
from datetime import datetime

default_args = {
'start_date': datetime(2024, 3, 11),
'catchup': False

}

with DAG('sequential_workflow', default_args=
default_args, schedule_interval=None) as dag:

step_a = BashOperator(
task_id='run_script_A',
bash_command='python script_A.py'

)

step_b = BashOperator(
task_id='run_script_B',
bash_command='python script_B.py'

)

step_a >> step_b # Defines the execution 
order

from kfp import dsl

@dsl.pipeline(
name='Sequential Workflow',
description='A pipeline that runs two scr

ipts sequentially.'
)
def sequential_pipeline():

step_a = dsl.ContainerOp(
name='Run Script A',
image='python:3.9',
command=['python'],
arguments=['script_A.py']

)

step_b = dsl.ContainerOp(
name='Run Script B',
image='python:3.9',
command=['python'],
arguments=['script_B.py']

)

step_a >> step_b # Defines the execution 
order

if __name__ == '__main__':
import kfp.compiler as compiler
compiler.Compiler().compile(sequential_pi

peline, 'sequential_pipeline.yaml')

from metaflow import FlowSpec, step

class SequentialWorkflow(FlowSpec):

@step
def start(self):

print("Running script_A.py")
import os
os.system("python script_A.py")
self.next(self.step_b)

@step
def step_b(self):

print("Running script_B.py")
import os
os.system("python script_B.py")
self.next(self.end)

@step
def end(self):

print("Workflow completed.")

if __name__ == "__main__":
SequentialWorkflow()



Necessity of Platform-independent WorkflowML

• Challenges
• Inefficient code-based workflow specification (e.g., hundreds of lines)

• Error-prone process and poor communicability

• Platform-independent grammars

• Difficult platform migration despite common semantics

• Goal
• Platform-independent and visual language for workflow specification

• Open-source workflow modeling tool

6



7

Workflow modeling language (WorkflowML) and Tool

A Platform-Independent Software-Intensive Workflow Modeling Language And An Open-Source Visual Programming Tool

• WorkflowML metamodeling

• WorkflowML tool development on ADOxx



Overall Approach

• Bottom-up WorkflowML development
• Collect workflow concepts from platforms

• Integrate workflow concepts

• Develop WorkflowML
extending UML activity diagram

• ADOxx-powered visual programming tool
• https://adoxx.org/

• Open-use metamodeling platform of OMiLAB NPO

• Easy development and deployment of domain-
specific modeling language

8



• Collect ontologies (graphs) from independent workflow platforms.

Platform-specific Ontology Building

9

docs
docs
Docs
- Core concepts
- Tutorials
- etc.

Subject Predicate Object

attribute-to-class (has, ...)

subclassing (is a type of, …)

equivalent-to (is, …)

composition (includes, …)

UML
metamodel 

relations

Argo’s workflow ontology

workflow has template

container is a type of template

script is a type of template

container has image

… … …

SPO extraction and ontology-building (refer Algorithm 1)



Platform-Independent Ontology Building (1/2)

• Integrate ontologies of platform-specific workflows and UML activity

10

Platform-independent
workflow ontology

[1] Rachel A Pottinger and Philip A Bernstein. 2003. Merging models based on given correspondences. In Proceedings 2003 VLDB Conference. Elsevier, 862–873.

Ontology integration
algorithm [1]



Platform-Independent Ontology Building (2/2)

• A snippet of integrated ontologies of the workflow platforms and the UML

11

Software-intensive 
workflow tasks

Loop tasks 
in the workflow

Workflow 
metadata

Concrete data dependency



WorkflowML Metamodeling

• Extend the metamodel of 
UML activity diagram 
based on the integrated
workflow ontology
• Defining stereotypes

• Connecting the stereotypes to 
metaclasses

• Defining attributes and 
enumerations

12



WorkflowML (Tool) Development On ADOxx

• Develop WorkflowML and its tool on ADOxx with graphical notations
• The tool and source are available at https://www.omilab.org/workflowml/

13



14

Evaluation

A Platform-Independent Software-Intensive Workflow Modeling Language And An Open-Source Visual Programming Tool

• Expressiveness of the WorkflowML

• Real case studies



Software-Intensive Workflow Concept Representation

• WorkflowML improves expressiveness of UML activity diagram for software-
intensive workflow specification.
• 22 new components for workflow

15



Expressiveness Evaluation of the WorkflowML

• Visual programming coverage (%)
• The ratio of visual-programmable wor

kflow specifications to platform-speci
fic code-based specifications

• WorkflowML achieved an average 
VP coverage of 90%
• across 42 example workflows from th

e four target workflow platforms

16



Real Case Applications of the WorkflowML

• ChatGPT audiobot workflow [1]

• VP coverage: 92.77%

• Total LoC: 249 lines

• NBA performance prediction 
workflow [2]

• VP coverage: 95.2%

• Total LoC: 459 lines

17
[1] https://github.com/anujkumar98/Meeting-Intelligence-Application/blob/main/Airflow/dag.py
[2] https://github.com/Sapphirine/202212-19-NBA-Player-Awards-and-Team-Performance-Prediction/blob/main/Player_DAG.py

Our platform-independent workflow modeling language (WorkflowML) 
significantly reduces the complexity and effort required for workflow specification.



18

Conclusion

A Platform-Independent Software-Intensive Workflow Modeling Language And An Open-Source Visual Programming Tool



Contributions

• A reusable bottom-up method for developing domain-specific modeling 
language using ontology integration
• Ontology building, ontology integration, and metamodeling algorithms

• Platform-independent WoflowML based on ontologies
• Ontology building data

• Metamodels

• An open source WorkflowML tool
• WorkflowML and its graphical notation implementation sources

• 42 simple example workflow models

• 2 real-case workflow models

19



Thank you

A Platform-Independent Software-Intensive Workflow Modeling Language 
And An Open-Source Visual Programming Tool
A Bottom-Up Approach Using Ontology Integration Of Industrial Workflow Engines

Dr. Yong-Jun Shin, yjshin@etri.re.kr

Dr. Wilfrid Utz, wilfrid.utz@omilab.org

April 3, 2025


