
A Modeling Method for Model-based Analysis and
Design of a System-of-Systems

Young-Min Baek, Zelalem Mihret, Yong-Jun Shin, and Doo-Hwan Bae
School of Computing

Korea Advanced Institute of Science and Technology (KAIST)
Daejeon, Republic of Korea

{ymbaek, zelalem, yjshin, bae}@se.kaist.ac.kr

Abstract—In recent years, a domain of Systems-of-Systems
(SoS) has emerged due to the needs of utilizing collective and
collaborative system capabilities. As interest in SoS engineering
has grown, this study focuses on the model-based analysis and
design of an SoS, and we propose a general-purpose modeling
method for the model-based SoS engineering (MBSoSE). Based
on requirements that modeling methods of MBSoSE approaches
should fulfill, required model types are identified (19 model types)
and they are classified on their different modeling purposes
and concerns (6 model categories). Model types are meta-
modeled using the ADOxx Metamodeling Platform and they are
implemented as modeling languages in a tool, called SIMVA-
SoS Modeler. Using the modeling tool developed, we designed
two different SoS cases and their scenarios that can be utilized
as inputs of simulation and verification tools. Through the case
studies, overall applicability of our modeling method for MBSoSE
is evaluated and specific modeling results are provided as base
reference models.

Keywords—Software System Modeling, Software Modeling
Tool, Model-based Systems-of-Systems Engineering (MBSoSE),
Simulation Model

I. INTRODUCTION

In recent years, a number of software-intensive system

domains leverage collective capabilities of multiple software,

based on emergent behaviors and goal-oriented orchestra-

tion [1], [2], [3]. Many networked and distributed systems,

for example, have been extended to other specialized system

domains, such as Internet-of-Things (IoT) [1], Cyber-Physical

Systems (CPS) [2], and Multi-Agent Systems (MAS) [3]. They

target to take advantages by employing software-intensive

components that have potential capabilities to contribute to

achieve a shared and high-level common goal(s). Meanwhile,

the quality of those integrated software-intensive systems has

been improved and their size and complexity have been getting

larger. With these changes, a more complicated system domain

has emerged, which is a System-of-Systems, called SoS for

short. The ISO/IEC/IEEE 15288 Annex G defines the SoS as

a system type that brings together a set of constituents for

a goal-based task that none of the individual constituent can

accomplish on its own [4].

Compared to conventional software/systems, an SoS pos-

sesses unique combinations of characteristics that make engi-

neering more challenging. The most distinguishing differences

on system characteristics are from constituents’ darkness [5].

For SoS engineers, comprehensive understanding and control

over individual performers are nearly impossible. Also, the

constituents not only decide their behaviors, manage resources

exclusively by their own, but they can also exist and operate

with or without the existence of an SoS. Although many

existing distributed and networked systems are comprised of

multiple component systems that are capable of performing

required functionalities, they are not independent both from

each other and from the higher-level system. On the contrary,

constituent systems (CSs) of an SoS are highly autonomous

and they can be independently designed in terms of operation

and management. These characteristics cause uncertain inter-

actions among multiple CSs. In turn, this may lead to various

emergent behaviours that SoS can utilize to achieve its goal.

A goal of SoS engineering (SoSE) is to drive the emergent

behaviour of multiple CSs in the right direction (i.e., goal

achievement) in the midst of uncertainties. According to

existing studies [6], [7], however, predicting and engineering

of all possible emergence are almost infeasible due to the scale

and complexity of an SoS. In addition, applying conventional

system/software engineering techniques for SoSE has much

difficulties because constituents should be regarded as black-

box components in many cases. Model-based software/system

engineering, therefore, should be refined, improved, and spe-

cialized for systematic SoS engineering.

In this paper, in order to address the scale and complexity

issues caused by SoS characteristics, we focus on a model-

based SoS engineering (MBSoSE) approach. Among various

MBSoSE approaches, this study proposes a general-purpose

modeling method for model-based analysis and design of

an SoS that is envisioned to deal with engineering issues

during the analysis and design phases of SoSE. Our modeling

method can serve dual purposes for methodologists and mod-

eling engineers (i.e., system architects/designers). A domain

methodologist can develop a domain-specific design method

at meta-level by extending our method as a base method,

and a practitioner who designs an SoS can perform modeling

activities on the modeling method developed by the method-

ologists. Our modeling method has been developed as a tool

called SIMVA-SoS Modeler (A Modeling Tool for Simulation-
based Verification and Analysis of SoS, and this tool supports

general-purpose modeling technique and procedure for various

SoS domains.

Our method is not only developed as a technical approach,

336

2020 27th Asia-Pacific Software Engineering Conference (APSEC)

2640-0715/20/$31.00 ©2020 IEEE
DOI 10.1109/APSEC51365.2020.00036

it is also implemented as an open-sourced modeling tool

that conforms to the SoS architecture and the SoS meta-

model. Major contributions of this study can be summarized

as follows:

• This study proposes a general-purpose modeling method

specialized for the model-based SoS engineering (MB-

SoSE). By defining 6 model categories and 19 model

types developed in the method, our method supports

extensions to develop domain-specific SoS modeling

methods.

• Our modeling method is implemented as a modeling tool,

called SIMVA-SoS Modeler. This tool can be used as a

means of producing simulation models and specifications

that can be used as inputs to the simulation and verifica-

tion tool in a consistent and systematic way.

• We implemented the modeling method as an open-

sourced modeling toolkit with an extensible library, sup-

ported by the Open Model Laboratory (OMiLab) com-

munity. Therefore, methodologists can utilize the library

to systematically develop their own domain-specific mod-

eling languages (DSMLs) or methods.

II. RELATED WORK

In this section, model-based engineering approaches that

can be utilized for SoS engineering are investigated. Nielsen

et al. conducted a systematic literature review on model-

based SoS engineering (MBSoSE) studies and investigated

the approaches in terms of eight dimensions to position an

SoS engineering problem and corresponding approaches [7].

Based on the comprehensive analysis by the study, some of

the representative modeling methods and analysis methods are

introduced in this section.

Modeling Methods and Architectural Frameworks for
MBSoSE. The Unified Modeling Language (UML) is a stan-

dardized general-purpose modeling language in the field of

software engineering [8]. It is used for design, specification,

and documentation of artifacts created during information sys-

tem development process. Extended from UML, SysML (Sys-
tem Modeling Language) is developed as an object-oriented,

general-purpose architecture modeling language for systems

engineering applications [9]. In addition to the specification,

design, and analysis; SysML also enables the verification and

validation of system properties. For these purposes, additional

diagrams such as the parameteric diagram are introduced

in SysML. Both UML and SysML have been considered

to be technologies that enable general-purpose Model-Based

Software/System Engineering (MBSE) and Model Driven De-

velopment (MDD) [10].

Existing architectures for conventional systems are estab-

lished on the assumption of tightly coupled system com-

ponents, and has formal foundations that only cope with

specification of architectures that are static or dynamic (but

limited to the anticipated reconfigurations known at design-

time). This has significant contribution to the lack of models

and tools that enables SoS engineers to deal with unique SoS

characteristics such as the analysis of uncertainties, emergent

Fig. 1. Components of a Modeling Method and an Architecture

behaviors, and evolutionary development. Another challenge

is due to size and complexity of SoS. Existing industrial tools

and practices with a modeling language need to be augmented

in order to fully express an SoS and its both individual and

emergent behaviors under the uncertainties. This leads to sub-

optimal design and expensive rework during integration [11].

The following three architectures and modeling frameworks

are highly related with SoS or directly developed to deal with

unique concerns of SoS. The TOGAF (The Open Group Ar-

chitecture Framework), which is an enterprise architecture, has

four perspectives: business, data, application, and technique.

It provides architecture and management methods throughout

the life cycle of enterprise IT systems based on enterprise

requirements [12]. The DoDAF (The DoDAF Architecture

Framework), which is a system modeling framework that

is optimized to analyze and design a large-scale defense

system, defines several viewpoints, such as capabilities, data,

operational, project, service, standards, and systems [13]. It

can be used to facilitate effective decision making through

organized and consistent information sharing across bound-

aries of systems, missions, stakeholders, and departments. The

AMADEOS (Architecture for Multi-criticality Agile Depend-

able Evolutionary Open SoS) framework supports to architect

an SoS at conceptual, logical, and implementation level based

on SysML profiles [14]. According to general SoS engineering

concerns, the AMADEOS models are analyzed in different

viewpoints, such as structure, dynamicity, evolution, depend-

ability and security, time, multi-criticality, and emergence.

Compared to the existing architecture frameworks, our method

is more extendable based on meta-models, so domain-specific

frameworks can be made on our method and tool.

Model-based Simulation and Verification of SoS. One

of our previous studies modeled different types of SoS with

probabilistic models and verify them using a statistical model

checker [15]. The study found that probabilistic models are

not only essential to represent nondeterministic behaviors of

black-box constituents but also viably proper to simulate un-

certain and emergent behaviors. In addition, since conventional

model checking approaches have had difficulties to examine a

large set of complicated behaviors, statistical model checking

337

Fig. 2. A Simplified Version of the Meta-Model for SoS Engineering (M2SoS)

(SMC) was found to be more feasible and practical for real-

world SoS cases. More recently, S. Park et al. developed a tool

for simulation-based verification and analysis for SoS [16],

called SIMVA-SoS. The study developed an SMC technique

based on the sequential probability ratio test (SPRT), and the

tool supports development of probabilistic simulations models

and specification of probabilistic scenarios as inputs.

III. BACKGROUND

In order to newly design a modeling method, a method-

ologist should know what components need to be devel-

oped so that the method fully exploits modeling capabilities.

As Figure 1 shows, stakeholders have interest in a system
and management/engineering concerns about the system. For

more systematic engineering and management of a system-

of-interest, the concerns are framed by concrete viewpoints
that govern one or more views handled by describing an

architecture and architectural description.

Based on a specific viewpoint, a modeling method can be

invented by developing a modeling technique that consists of a

modeling language(s) and modeling procedures. The modeling

language contains three essential constructs: notation, syntax
(grammar), and semantics. The notation is concerned with

representation of various concepts in the modeling language.

In the model-based system/software engineering approach, in

most cases graphical symbolisms (i.e., icons) are used for the

purpose of visual representation. The syntax (and its syntactic
grammar) defines whether or not the notations (symbols of a

modeling language) are correctly composed to a valid form

of a language, and it determines how modeling components

are put together. On the other hand, the semantics is about

meanings associated with or intended by the whole model,

components, and relations. Based on the notations, syntax,

and semantics defined, semantic mapping associates meanings

embedded in the syntax of the modeling language with the

semantic domain. From a modeling engineer’s perspective,

a modeling method also should provide effective modeling
procedure to optimally utilize the capabilities of the modeling

language towards his or her intended goal. In addition, a

modeling method provides mechanisms and algorithms for

various purposes such as inspection, simulation, visualization,

transformation, evaluation, and so on.

A. Meta-Model for SoS Engineering

Our base model that we consider to develop a modeling

method for MBSoSE is a meta-model whose name is M2SoS,

which stands for a Meta-Model for Systems-of-Systems (En-
gineering) [17]. As Figure 2 shows1, the M2SoS provides a

holistic high-level view of an SoS, which includes major SoS

entities. Using the M2SoS, both SoS engineers and managers

can be guided during the whole MBSoSE phases, and they can

also evaluate the completeness or correctness of their analysis

and design results (e.g., models, artifacts). Another capability

of the M2SoS is that SoS engineers can conduct the onto-

logical analysis for various SoS domains. This enables SoS

stakeholders (i.e., both SoS-level stakeholders and constituent-

level stakeholders) to establish a common knowledge base of

their target SoS. If the ontology is developed based on the

M2SoS and is stored in a shared project repository of an SoS,

commonly used vocabularies can be accessed and utilized for

various purposes, such as for communications.

Based on the M2SoS, an SoS architecture can be developed

for conceptualizing various SoS viewpoints. Also, required

classes of an SoS and corresponding modeling languages can

also be developed that conform to the architectural definition

of a general SoS. While defining classes, there are several

requirements for general-purpose metamodeling of SoS. First,

modeling entities should be distinguished in terms of their

belongings and affiliations while considering levels and layers

defined in the SoS architecture. Second, metamodeling of an

SoS should consider goal-oriented engineering (e.g., GORE),

since most SoSs have high-level common objectives either

explicitly or implicitly. The third requirement mainly focuses

on the uncertainties inherent in an SoS. Environmental factors

that produce most of the uncertainties should be regarded as

one of the first-tier entities [19]. In the next section, these

entities of the M2SoS are utilized to develop a high-level

conceptual SoS architecture and corresponding model types.

1The meta-model of Figure 2 is an abstracted version of the original M2SoS.
You may refer to the complete documentation of M2SoS from our website
[18].

338

Fig. 3. Overall Process to Develop a General-Purpose Modeling Method for SoS Engineering

IV. A MODELING METHOD FOR SOSE

A. Overall Approach

This study develops a modeling method and the method is

supported by a tool, and overall process to develop the method

is illustrated in Figure 3. Step (i) describes requirements

specification for developing an SoS modeling method from

the perspective of analysis, design, simulation and verification.

This step comprehensively analyzes requirements that should

be satisfied by generated models for every engineering phase.

An output of the first step is a set of requirements to be

fulfilled by our modeling method, and the requirements will be

used to validate the method afterwards. Based on the collected

requirements, Step (ii) develops a high-level SoS architecture

and identifies required model types (i.e., model kinds). For the

systematic identification, this step defines conceptual levels

and layers of the high-level SoS architecture by utilizing the

SoS meta-model as inputs. In addition, the model types are

classified into 6 model type categories to generally cover SoS

concepts/entities and meet the requirements of Step (i). Step

(iii) describes actual development of a modeling method by

meta-modeling all the model types identified in the previous

step. This step produces several model types (i.e., meta-

models) according to the categorization of Step (ii), and model

types are implemented on the modeling tool on Step (iv)

as a tool, called the SIMVA-SoS Modeler. As explained in

Section III, the tool includes multiple modeling languages

consisting of diagrams and procedures to support our modeling

technique. The tool, in Step (v), is deployed and released on

the open-modeling community as a tool library, which can be

extended by any other domain methodologists.

B. Requirements for Developing a Modeling Method

1) Requirements for Analysis and Design of SoS:
a) Identification of SoS entities and boundary: One of

the major purposes of using an architecture (and architectural

description) is to establish a specific viewpoint by identifying

system entities and relationships among entities. The entities

of an SoS include software and hardware components, agents,

services, human and organization factors, data, and so on.

In addition, the boundary of an SoS should be somehow

determined for effective MBSoSE. However, the boundary of

an SoS is not static in most cases, but it could be ambigu-

ous, fluid, and negotiable, even at runtime. Nonetheless, our

modeling method should be able to provide the criteria for

what entities are included in and excluded from an SoS, by

providing finite set of classes in model types.

b) Support of goal-oriented analysis and design: As

a branch of requirements engineering, conventional sys-

tem/software engineering have conducted Goal-Oriented Re-

quirements Engineering (GORE) to acquire concerns and

identify goals, derive corresponding requirements, and capture

alternatives and conflicts [20]. An SoS must have a shared

common goal either implicitly or explicitly, and the most

important objective of SoSE is to drive emergent behaviors

to achieve the goal. Therefore, goal-based analysis and design

should be supported by a proper modeling method, and the

method should be well-accepted and well-established. Based

on the common goals of an SoS, engineers can choose an

overall engineering approach; it can be top-down or bottom-

up. Unlike a conventional monolithic system or software, since

an SoS can consist of legacy systems that are already designed

without consideration of belonging to a higher-level system

(i.e., SoS), the bottom-up approach might be inevitable choice

for some cases. The bottom-up approach can be realized

by capability-based analysis of constituents, so the analysis

of collective capability of multiple constituents should be

supported by our modeling method.

c) Support of traceability between models or between
modeled objects: One of the principal reasons for using a mod-

eling tool is to ensure the completeness of models built and

the traceability among them. Model traceability help engineers

and stakeholders understand associations and dependencies

among artifacts and entities [21]. Especially, an SoS has

much more entities and artifacts that are interconnected with

and interdependent on each other, support of the traceability

outweighs any other issues for complexity management and

communications.

d) Support of domain-specific extensions: Our goal is

to develop a general-purpose (i.e., domain-general) modeling

method and tool that can be extended to domain-specific SoS

modeling methods by actual domain engineers. Since one

general-purpose modeling method cannot cover all domain-

specific systems, our modeling method has to properly con-

sider domain-specific extensions. Even though all classes are

not used (and instantiated) for every domain, model types of

our modeling method must be able to be extended by domain-

specific methodologists.

339

e) Support of ontological analysis: Ontology is a for-

mal and explicit representation of knowledge [22], which

describe concepts with their categories, properties, and re-

lations with other concepts. Building an ontology can be

significantly valuable because the ontology establishes com-

mon vocabularies and common understanding. This enables

the refined communication among system stakeholders by

reducing terminological/conceptual mismatches among them.

Besides, ontology is used to capture system’s complexity with

structured terminologies and taxonomies, and the method for

this is called ontologial analysis. The analyzed results can

support the decision for the system design and development.

We introduced the M2SoS to support ontological analysis

for SoS engineers as discussed in Section III-A [17]. Our

modeling method caters features that enables to utilize the

M2SoS capabilities.

2) Requirements for Simulation and Verification of SoS:
a) Consideration on object-oriented (OOP) and agent-

oriented programming (AOP): Based on the OOP and AOP

paradigms, a design and programming paradigm specialized

for MBSoSE can also become an extension of existing system

development paradigms. Agents of an agent-based system

(e.g., Multi-agent System (MAS)) share a lot of similarities

with constituents of an SoS [17]. Both system types have

a higher-level common goal(s) to be achieved by collective

capabilities of autonomous component systems, so called

agents and constituents. However, a constituent system can

be much more independent from normal objects or agents

and SoS engineers may not have full authority to access or

control the constituents. For these reasons, a modeling method

for MBSoSE should borrows fundamental concepts and ideas

from the OOP and AOP and extend them to be more suitable

for constituents of an SoS.

b) Representation of temporal and geographical prop-
erties: For more realistic simulation-based analysis, a sim-

ulation model(s) generated by our modeling method should

be able to represent temporal and geographical information.

The temporal information primarily includes time, duration of

actions and temporal properties of events. The geographical

information includes every simulated object’s geolocation that

positions the object on a logically or physically designed

map. The way of simulation of temporal and geographical

properties can differ depending on formalisms of simulation

models and simulation engine’s mechanism. Among various

simulation models, our modeling method considers models

for the simulation as discrete-event/time simulation (DES),

which simulates behaviors of a system as a discrete sequence

of events in logical time.

c) Representation of uncertainties: One of the purposes

of performing model-based simulation is to observe and ana-

lyze possible set of non-deterministic behaviors with respect

to a given model. The observed behaviors can be used as

a solution recipe to deal with real-world domain specific

problems. Non-deterministic behaviors connote the lack of

certainty about when a specific behavior will occur in time.

It doesn’t necessarily imply the lack of knowledge about the

Fig. 4. High-level SoS Architecture Conceptualizing Levels and Layers

behavior. In the case of SoS, however, due to evolutionary

development and emergent behaviors characteristics it is pos-

sible that some behaviors may prevail following interactions

between constituent systems. These inherent uncertainties

can pose risks in achieving SoS goals. Nonetheless, such

uncertainties are not avoidable, instead can be utilized for

achieving the SoS goals. With regard to this, our modeling tool

should support the modeling of rules and policies to deal with

uncertainty representation and analysis in view of orchestrating

the behaviors towards to achieving the SoS goals.

d) Support of dynamic reconfiguration: An SoS and its

constituents dynamically change their behaviors and struc-

tures, while performing operations. This characteristic of an

SoS is called dynamic reconfiguration or (self-)adaptation,

and it is one of major dimensions to position and develop a

model-based SoS engineering method [23]. This capability is

to undertake both internal and external changes to behaviors,

structures (connections), and compositions of an SoS. In

order to realize and simulate the reconfiguration capability,

input models should be able to be dynamically reconfigured

during simulation. Reconfigurable models can be developed by

allowing the representation of probabilistic behavior execution,

state transitions and structural changes.

e) Capturing and observing emergent behaviors: Emer-

gence of behaviors refers to the synergistic behaviors that

cannot be accounted for by a single constituent, and capturing

the emergence is a primary reason for simulation-based anal-

ysis. In order that simulation models are capable of exhibiting

emergent behaviors, autonomy of input constituent models

need to be properly represented and simulated. Depending

on constituents’ autonomy, a simulation engine should let the

whole models behave on their own to exhibit the emergence.

During the simulation, emergent behaviors can be observed,

which can be goal achievement, task accomplishment, or emer-

gent occurrence of accidents/failures. To capture and analyze

them, a modeling method should support the specification

of scenarios and properties, to guide a simulation and to

discover/examine the emergence.

340

C. High-level SoS Architecture

Compared to general software/system architectures, repre-

senting the architecture of an SoS has other challenges. First,

an SoS can involve both cyber and physical system com-

ponents that exhibit highly uncertain and non-deterministic

behaviors. In addition, human factors make the architecting

more challenging, since SoS engineers should consider not

only technical parts but also social or socio-technical aspects.

Most SoSs, second, do not have fixed and static system

boundaries. The boundary can be dynamically defined ac-

cording to the engineering concerns, runtime situations, or

the evolutionary nature of SoS. This characteristic requires

the adaptiveness capability of an SoS, which refers that an

SoS is capable of adjusting itself in response to changes

both internal and external context. Third, all constituents and

component elements are somehow interacting with each other,

and SoS engineers should coordinate (i.e., orchestrate) them

to accomplish a shared goal(s) or mission(s). In order to

effectively integrate the constituent elements, a holistic view

should be provided by using proper architectural descriptions.

For these reasons, defining a high-level abstract architecture

can be a more feasible and effective solution, rather than

using lower-level specific approaches (e.g., domain-specific,

technology/technique-specific approaches).

In order to provide general-purpose architectural description

for various SoSs, our architecture provides a comprehensive

view by defining conceptual levels, layers, and abstract inter-
faces, as depicted in Figure 4. The levels consider managerial

and operational contexts, and they are realized by appropriate

engineering/management strategies. For each level, one or

more layers are defined according to related SoS stakehold-

ers and their engineering concerns, which are analyzed and

designed by different model types. Each model type has a

specific engineering discipline, thus it means that a single level

can compose multiple different disciplines. In our architecture,

two types of abstract interfaces are identified, which are

cross-contexts and cross-disciplinary, respectively. The cross-

contexts can be defined as interfaces between different levels,

and the cross-disciplinary aspects can be considered on the

interfaces between different layers. To reflect “open-at-the-

top” and “open-at-the-bottom” characteristics of an SoS [24],

the architecture does not involve neither specific top-level

applications nor fixed bottom-level elements.

D. Definition of Multi-Aspect Model Types

In many general-purpose software/system modeling meth-

ods such as UML and SysML, model kinds are typically

classified into three model types: (a) structural models, (b)

behavioral models, and (c) interaction models. However, for

SoS engineering, internal information of a considerable num-

ber of components cannot be fully available for engineering.

Not only that, organizations, constituents, infrastructures, and

their contexts and environment may have more complicated

interconnection with each other. In order to address these

concerns, our modeling method classifies model types (MTs)

into three categories: Architectural MT (AMT), Reference MT

TABLE I
CLASSIFICATION OF MODEL TYPES

Category Included Model Types
Architectural
Model Types
(AMT)

SoS Integration Model (SoSIM)
SoS Organization Model (SoSOrgM)
SoS Infrastructure Model (SoSInfraM)
SoS Environment Model (SoSEnvM)
SoS Map Model (SoSMapM)

Reference Model
Types (RMT)
RMT-Goal-
based/-oriented
Model Types
(RMT-GMT)

Goal Decomposition Model (GDM)
Requirement
Specification Model (RQSM)
Rule Specification Model (RLSM)
Risk Analysis Model (RAM)

RMT-System
Model Types
(RMT-SMT)

System Capability Model (SCM)
Service Description Model (SDM)
Interface Description Model (IDM)

RMT-Operational
Model Types
(RMT-OMT)

Task Process Model (TPM)
State Machine Model (SMM)

RMT-Domain
Model Types
(RMT-DMT)

Environmental Factor Model (EFM)

Verification &
Validation Model
Types (VVMT)

Simulation Specification (SimSPEC)
Simulation Scenario Specification (SimScnSPEC)
Verification Specification (VerifSPEC)
Verification Property Specification (VerifPptySPEC)

(RMT), and Verification and Validation MT (VVMT). Due to

the lack of space, the model types are summarized in Table I

detailed definitions and meta-models of each diagram are

uploaded on our web page [18].
1) Architectural Model Types (AMTs): The AMTs represent

architectural (i.e., structural) viewpoint of an SoS. The main

purpose of these model types is to integrate and orchestrate

containers, constituents and component entities into an SoS

in a model-based manner. To describe SoS structure, orga-

nization(s), infrastructure(s), and environment(s) are defined

as major container classes, and the SoS Integration Model
composes them to determine an SoS boundary.

There are four major models to represent architectural

aspects of an SoS: SoS Integration Model, SoS Organization
Model, SoS Infrastructure Model, and SoS Environment Model.
The overall interconnection is described and components are

integrated by the SoS Integration Model, and it has multiple

inter-references to other architectural models (organization,

infrastructure and environment). Also, for the representation

of geographical information, an SoS-level map(s) is defined

using the SoS Map Model.
2) Reference Model Types (RMTs): The RMTs are basically

referenced by the Architectural Model Types to model com-

prehensive and supplementary information of an SoS, such as

system, operations, goals, and domain-specific information. By

extending reference model types, multiple and cross-domain

SoS engineers can collaboratively conduct domain-specific

analysis and design.
a) Goal(-based) Reference Model Types (GMTs): This

model type is used to define models that are related to

(or based on) SoS-level common goals and objectives. By

decomposing and refining SoS goals, SoS engineers can derive

and specify requirements, rules, policies, and other factors.

341

Fig. 5. User Interface of the SIMVA-SoS Modeler

b) System Reference Model Types (SMTs): This model

type is used to define models that describe system elements

and their capabilities (i.e., abilities and capacity of systems),

which are utilized/deployed for SoS-level goal achievement.

In order to contrive to get collaborative capabilities, interop-

erability analysis using the SMTs is required.

c) Operational Reference Model Types (OMTs): This

model type is used to define models that represent behavioral

aspects of SoS entities, such as task (and business) processes,

actions, other behaviors. Behaviors of an SoS can be classified

into two categories; one is a collective behavior (i.e., collab-

oration, cooperation) by multiple constituents and the other

is an individual behavior performed by a single constituent.

The collective behavior is described by the Task Process
Model, and the individual behavior is modeled using the State
Machine Model and action specifications only if the internal

information can be obtained by an SoS engineer.

d) Domain Reference Model Types (DMTs): This model

type is used to define models that describe information of

environmental factors, domain, and context. In the current

version of our method only includes the Environmental Factor
Model that represents relations between environmental factors

and dynamic changes of the factors for specification and

analysis of SoS environment and more detailed information

of the model can be found in our previous work [19].

3) Verification and Validation Model Types (VVMTs):
The VVMTs specify input artifacts/specifications for execu-

tion time, which mainly focuses on V&V phases, such as

simulation, testing, and verification (model checking). These

specification model types are basically designed for producing

inputs of the simulation-based statistical model checking tool,

called SIMVA-SoS [16]. For analysis using the SIMVA-SoS,

Simulation Scenario Specification is needed for intended exe-

cution of a simulation, and Verification Property Specification
is required for (statistical) model checking of the simulation

model.

E. Development of a Modeling Tool: SIMVA-SoS Modeler

The ADOxx Metamodeling Platform was originally devel-

oped and released by the OMiLAB of the University of Vienna.

Along with other frameworks for modeling tool development

(e.g., EMF), the ADOxx framework is known as one of the

most innovative meta-modeling tools to model modeling meth-

ods. The framework provides extensible functions, libraries

and it also supports the whole development of a modeling

method (or methodology). This enables efficient development

of a GUI-based modeling tool [25]. The ADOxx platform

mainly supports metamodeling approaches, and we can easily

develop a modeling language by defining classes, relation

classes, and their attributes and operations at meta-level.

Our modeling tool is developed based on the ADOxx

meta-modeling platform, and it is specialized to address and

implement unique concerns of system of systems engineer-

ing methods. The SIMVA-SoS stands for SIMulation-based
Verification and Analysis for SoS, and this supports model-

based SoS engineering mainly for analysis, design, validation

and verification [16]. The SIMVA-SoS can be generally used

as a statistical model checking tool, which is performed by

repeating multiple times of simulations. In order to simulate

an SoS, the SIMVA-SoS requires simulation models, config-

uration, and optionally a scenario as inputs. The SIMVA-SoS
Modeler is hereby used for SoS engineers to build a simulation

model(s) of an SoS in a systematic way, by utilizing model

types we defined in Section IV.

The SIMVA-SoS Modeler supports several functionalities for

SoS engineers to perform the modeling activities. The current

version of our tool supports modeling of 19 model types, and

a user (i.e., SoS modeling engineer) can select model types by

following a modeling procedure of a chosen approach (e.g.,

top-down or bottom-up). As shown in Figure 5, the user can

perform graphical modeling using modeling interfaces (e.g.,

toolbox, canvas, dialogs), and the tool checks if a modeling

rule or cardinality is violated. After a model is created, it can

be exported to a file of the XML- or ADL(ADOxx Model

Language)-formatted file, and other external model files also

can be imported into our tool. The tool and its details are

described on our website [18].

The ADOxx community is based on the open model initia-

tives, and a main purpose of the initiatives is to enable the

development of enterprise reference models collaboratively,

and promote sharing of developed software products to the

extent that everyone can copy, use, modify and (re)-distribute

in an open and public process without restriction2.

V. CASE STUDY

A. Case Scenario Design

To assess the modeling capability of the SIMVA-SoS
Modeler, we selected two SoS case systems, which can

cover different SoS types (directed (DIR), acknowledged

(ACK), collaborative (COL), and virtual (VIR), proposed by

Maier’s study [26] and Dahmann and Baldwin’s study [27]).

The SoS type is determined by explicitness of SoS-level

goal, management (enforced, encouraged or operational-

independent), and ownership/governance (subordinated or

2https://www.adoxx.org/live/home

342

TABLE II
CLASSES AND INSTANCES OF SOS CASES

(a) Cleaning Agents SoS (CASoS)

Classification Class Instance

Organization Organization
RoomCleaningOrg
SequentialCleaningTask
PrallelCleaningTask

Constituents CS
SweepingRobot
MoppingRobot
SweepingMoppingRobot

Infrastructure

System WindowControllerSystem
Service DustMeasuringService

Resource
Broom
Mop

Environment
Environment
Element

FloorTiles
Window
OutdoorDust

(b) Incident Response SoS (IRSoS)

Classification Class Instance

Organization Organization

IncidentResponseOrg
- IncidentSceneMngOrg
– CasualtyManagementOrg
– FirefightingOrg
- MedicalTreatmentOrg

Task

IncidentResponseTask
- IncidentSceneMngTask
– CasualtyRescueTask
– FirefightingTask
- PatientCareTask

Constituents CS

CommandCenter
FirefighterAgent
RescueAgent
PTSAgent (Ambulance)
MedicalCenter

Infrastructure

System
RadioCommunicationSystem
TrafficControlSystem

Service
WeatherForecastingService
OccupancyCheckingService

Resource

RescueEquipment
FirefightingEquipment
First-aidEquipment
SurgicalEquipement
Beds

Environment
Environment
Element

WeatherCondition
Fire
Patients

managerial-independent) [15]. The first SoS case is a cleaning
agents SoS that collaboratively cleans a room by employing

autonomous robot agents, and the second case is an incident
response SoS that performs missions to handle an accident or

incident, which may result in casualties.

• [COL-type] Cleaning Robot Agents SoS (CASoS): The

CASoS case was developed as a collaborative-type SoS

example, and major components are described in Table II-

(a). This SoS has an organization of autonomous cleaning

robots who co-operate to clean a room. An SoS-level goal

is to clean all tiles of a room and we assume actions

of mopping a tile should follow sweeping actions for

cleaning all tiles. The SoS goal can be achieved in two

ways. The first is a sequential task that mopping agents

mop all tiles after they finish sweeping the tiles, and the

other is a concurrent task that sweeping and mopping

agents work together in parallel.

• [DIR/ACK-type] Incident Response SoS (IRSoS): Another

SoS example is designed as a directed or acknowledge-

type SoS, and components are listed in Table II-(b). When

an incident occurs, such as a large fire incident happening

Fig. 6. Goal Decomposition Model of CASoS

Fig. 7. An SoS Organization Model of IRSoS

at a high rising building, the SoS should respond to the

emergency situation that can cause mass casualties. The

two major tasks are to rescue patients from the incident

area and to extinguish the fire. To achieve the tasks,

Firefighters, Ambulances, and Hospitals cooperate with

each other according to SoS-level goals, requirements,

based on their individual and collaborative capabilities.

B. Modeling Case Scenarios using SIMVA-SoS Modeler

Both SoS cases should explicitly have SoS-level common

goal(s) that organizations and constituents pursue. Figure 6

depicts a modeled Goal Decomposition Model of the CASoS
that analyzes a goal tree including the highest-level goal and

subgoals. In order to systematically elicit and refine the goals,

classes of Goal, Requirement, Task, and required relation-

classes (e.g., decomposition, means-ends) are instantiated.

Two case scenarios have different types and structures of

organizations; The CASoS case exhibits totally collaborative

behaviors based on robot agents’ autonomous capabilities,

but the IRSoS case is managed, guided, and governed by

specific SoS-level managers as the SoS Organization Model
of Figure 7 shows. This means that the CASoS case does

not need to mandatorily include Task Process Models, but the

IRSoS does. One of the required tasks of the IRSoS is modeled

in Figure 8. The model of ManageIncidentTask represents

required working flows using activities, and the activities

are related to corresponding subtasks, roles, constituents, and

resources.

As explained in Section V-A, a modeling method that can be

used in general purposes should support the variety of model-

ing procedures and approaches, such as top-down/bottom-up.

In SIMVA-SoS Modeler, the procedures can be determined by

343

Fig. 8. A Task Process Model of IRSoS: ManagingIncidentTask

ordering the modeling activities. For example, we designed

the CASoS case in a bottom-up way because unit robots are

not originally designed for higher-level collaboration and SoS-

level integration. On the contrary, the IRSoS or MCI-response

SoS [16] considers goal-based cooperation and interactions

when the SoS is designed, thus a top-down approach fits to

this case. Other modeling results are uploaded on our web [18].

VI. EVALUATION AND DISCUSSION

A. Evaluation of Case Study

Our modeling method, its model types and case studies are

evaluated based on the requirements listed in Section IV-B.

Validation of requirements for SoS analysis and design.
In order to identify SoS entities and boundary, our model

types are categorized depending on whether they are inside

or outside of an SoS. An SoS Integration Model integrates

every entities, but the entities in the SoS boundary are mainly

modeled by SoS Organization Model and SoS Infrastructure
Model. References to entities outside of the boundary are

modeled by SoS Environment Model, and additional reference

models can be used to describe supplementary information,

such as contexts, standards, technologies, and so on. Our mod-

eling method and tool supports the goal-oriented requirements

engineering by providing Goal Decomposition Model, and a

modeling engineer can elicit and refine the goals. According

to a chosen approach, a top-down or bottom-up goal modeling

can be performed. Based on the integration model and its

derived goal model(s), an engineer can effectively trace objects

by following their inter-references (model pointers) to other

SoS tasks and objects.

In order to support domain-specific extensions and their

ontological usages, the modeling tool is first released as

a general-purpose (i.e., domain-general) modeling library

(SIMVA-SoS Modeler v3.1). The library can be extended by

defining domain-specific classes using the ADOxx Develop-
ment Toolkit, and the extended languages can be considered

as domain-specific modeling languages (DSMLs). If modeling

results are produced based on the DSML, a set of objects

defined in the models can be exported and collected to provide

common vocabularies for model-based ontological analysis of

an SoS.

Validation of requirements for SoS simulation and
verification. Most well-known simulation models have their

own formalisms, and we formalized required models by

metamodeling classes and relationships for each model. In

model types of our modeling method, every class can be

converted into objects/agents for both object- and agent-

oriented programming and simulation. For better modular-

ization and reuse of classes, we have designed interfaces

and abstract SoS classes both in the tool and in Java-based

simulation model. The top-level abstract class is SimObject,

and classes inheriting SimObject can be specialized into

other abstract classes, such as SimActionableObject and

SimNonActionableObject (See detailed definitions of

abstract classes in [18]). For system classes, behaviors can be

probabilistic and instances of SimAction class have temporal

properties, such as duration and time constraints.

In the SIMVA-SoS, to support dynamic reconfiguration

during the simulation, some of our models allow runtime

manipulations by external actors or events. Since one of the

major reasons to perform the reconfiguration is changes of

object status, our Task Process Model can be dynamically

determined in terms of role assignment, performers, and task

execution paths. Also, each System Capability Model holds

its own knowledge base to dynamically make decisions to

perform actions or state changes by assessing conditions,

cost/benefit, and priorities of actions. These dynamic changes

and interactions lead to emergence of behaviors, and collab-

orative goal achievement or occurrence of failures can be

observed and analyzed during the simulation of the SIMVA-
SoS.

B. Discussion

One of the potential threats to our modeling method can

be the scalability of SoS models. If the target SoS becomes

more complicated, the number of model instances, objects,

interconnections can be increased exponentially. Even though

the SIMVA-SoS Modeler does not set upper limits on numbers

of models and their elements, but disordered models may lead

to the generation of poor simulation models. When extending

our method, an SoS methodologist can prevent spaghetti

modeling by specifying rules/constraints, which can be the

object and relationship cardinality of classes and relations or

conversion rules. The rules can be directly implemented by the

methodologist using script-based mechanisms & algorithms

(written in the AdoScript supported by the ADOxx frame-

work).

The current version of the SIMVA-SoS Modeler (v3.1) sup-

ports exporting and importing models as XML/ADL-formatted

files. Generating simulation models require another effort for

manual programming, so designing the simulation model may

be at the expense of additional cost for MBSoSE While

344

implementing simulation models on SIMVA-SoS. To address

this issue, we are now developing a XML2Java technique/tool

that automatically generates simulation models (e.g., Java

code, DEVS model) based on modeling outputs of SIMVA-
SoS Modeler.

VII. CONCLUSION

This study focuses on a model-based SoS engineering

(MBSoSE) approach by proposing a general-purpose SoS

modeling method. For the development of a general-purpose

SoS modeling method, we first identify requirements that

should be commonly fulfilled by MBSoSE approaches. Based

on the requirements, model types and their meta-level classes

are developed and modeling activities are supported by a

tool, called the SIMVA-SoS Modeler (A modeling tool for
SIMulation-based Verification and Analysis of SoS). The model

types implemented in our tool conform to the high-level SoS

architecture and SoS meta-model. Using the modeling tool,

two domain-specific SoS cases are modeled for the validation

of requirements. For both cases, evaluation results show that

the requirements are fulfilled appropriately and our modeling

method can effectively support the representation of an SoS-

of-interest for the MBSoSE. Also, the modeling results can

be exported as input files for simulation and verification

purposes, especially for the SIMVA-SoS [16]. In future work,

we aim to develop a model-driven approach that automatically

generates object/agent-oriented simulation code of modeling

outputs made using SIMVA-SoS Modeler.

ACKNOWLEDGEMENT

This work was partly supported by Institute of Information

& communications Technology Planning & Evaluation (IITP)

grant funded by the Korea government(MSIT) (No. 2015-

0-00250, (SW Star Lab) Software R&D for Model-based

Analysis and Verification of Higher-order Large Complex

System) and Next-Generation Information Computing Devel-

opment Program through the National Research Foundation

of Korea(NRF) funded by the Ministry of Science, ICT

(2017M3C4A7066212).

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[2] K. Kim, “Challenges and future directions of cyber-physical system soft-
ware,” in 2010 IEEE 34th Annual Computer Software and Applications
Conference. IEEE, 2010, pp. 10–13.

[3] F. Zambonelli, N. R. Jennings, and M. Wooldridge, “Developing multi-
agent systems: The gaia methodology,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 12, no. 3, pp. 317–370,
2003.

[4] L. Yang, K. Cormican, and M. Yu, “An ontology model for systems en-
gineering derived from iso/iec/ieee 15288: 2015: Systems and software
engineering-system life cycle processes,” World Academy of Science,
Engineering and Technology, International Journal of Computer, Elec-
trical, Automation, Control and Information Engineering, vol. 11, pp.
1–7, 2016.

[5] J. P. van Gigch, “General systems theory. by lars skyttner. published by
macmillian press, london, 1996, isbn 0 333 61833 5,” Systems Research
and Behavioral Science, vol. 14, no. 2, pp. 149–150, 1997.

[6] I. Sommerville, D. Cliff, R. Calinescu, J. Keen, T. Kelly,
M. Kwiatkowska, J. Mcdermid, and R. Paige, “Large-scale complex
it systems,” Communications of the ACM, vol. 55, no. 7, pp. 71–77,
2012.

[7] C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Pe-
leska, “Systems of systems engineering: basic concepts, model-based
techniques, and research directions,” ACM Computing Surveys (CSUR),
vol. 48, no. 2, pp. 1–41, 2015.

[8] O. A. Specification, “Omg unified modeling language (omg uml),
superstructure, v2. 1.2,” Object Management Group, vol. 70, 2007.

[9] M. Hause et al., “The sysml modelling language,” in Fifteenth European
Systems Engineering Conference, vol. 9, 2006, pp. 1–12.

[10] J.-P. Tolvanen and S. Kelly, “Model-driven development challenges and
solutions: Experiences with domain-specific modelling in industry,” in
2016 4th International Conference on Model-Driven Engineering and
Software Development (MODELSWARD). IEEE, 2016, pp. 711–719.

[11] J. Woodcock, A. Cavalcanti, J. Fitzgerald, P. Larsen, A. Miyazawa, and
S. Perry, “Features of cml: A formal modelling language for systems of
systems,” in 2012 7th International Conference on System of Systems
Engineering (SoSE), 2012, pp. 1–6.

[12] A. Josey, “An introduction to the togaf standard, version 9.2,” W182,
The Open Group, Reading, UK, 2018.

[13] D. of Defense, “Dod architecture framework, version 2.0, volume 1:
Introduction, overview, and concepts manager’s guide,” 2009.

[14] A. Babu, S. Iacob, P. Lollini, and M. Mori, “Amadeos framework and
supporting tools,” in Cyber-Physical Systems of Systems. Springer,
2016, pp. 128–164.

[15] D. Seo, D. Shin, Y. Baek, J. Song, W. Yun, J. Kim, E. Jee, and D. Bae,
“Modeling and verification for different types of system of systems using
prism,” in 2016 IEEE/ACM 4th International Workshop on Software
Engineering for Systems-of-Systems (SESoS), 2016, pp. 12–18.

[16] S. Park, Y.-j. Shin, S. Hyun, and D.-H. Bae, “Simva-sos: Simulation-
based verification and analysis for system-of-systems,” in 2020 IEEE
15th International Conference of System of Systems Engineering
(SoSE). IEEE, 2020, pp. 575–580.

[17] Y. Baek, J. Song, Y. Shin, S. Park, and D. Bae, “A meta-model
for representing system-of-systems ontologies,” in 2018 IEEE/ACM
6th International Workshop on Software Engineering for Systems-of-
Systems (SESoS), 2018, pp. 1–7.

[18] SIMVA-SoS Modeler, 2020 (accessed July 24, 2020),
https://sites.google.com/view/sos-modeler.

[19] Y.-J. Shin, Y.-M. Baek, E. Jee, and D.-H. Bae, “Data-driven environment
modeling for adaptive system-of-systems,” in Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing, 2019, pp. 2044–
2047.

[20] J. Horkoff, F. B. Aydemir, E. Cardoso, T. Li, A. Maté, E. Paja,
M. Salnitri, J. Mylopoulos, and P. Giorgini, “Goal-oriented requirements
engineering: A systematic literature map,” in 2016 IEEE 24th Interna-
tional Requirements Engineering Conference (RE). IEEE, 2016, pp.
106–115.

[21] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni,
“Model traceability,” IBM Syst. J., vol. 45, no. 3, p. 515–526, Jul.
2006. [Online]. Available: https://doi.org/10.1147/sj.453.0515

[22] T. R. Gruber et al., “A translation approach to portable ontology
specifications,” Knowledge acquisition, vol. 5, no. 2, pp. 199–220, 1993.

[23] C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Peleska,
“Systems of systems engineering: Basic concepts, model-based
techniques, and research directions,” ACM Comput. Surv., vol. 48,
no. 2, Sep. 2015. [Online]. Available: https://doi.org/10.1145/2794381

[24] R. Abbott, “Open at the top; open at the bottom; and continually
(but slowly) evolving,” in 2006 IEEE/SMC International Conference on
System of Systems Engineering, 2006, pp. 6 pp.–.

[25] H. Fill and D. Karagiannis, “On the conceptualisation of modelling
methods using the adoxx meta modelling platform,” Enterp. Model.
Inf. Syst. Archit. Int. J. Concept. Model., vol. 8, no. 1, pp. 4–25, 2013.
[Online]. Available: https://doi.org/10.18417/emisa.8.1.1

[26] M. W. Maier, “Architecting principles for systems-of-systems,” Systems
Engineering: The Journal of the International Council on Systems
Engineering, vol. 1, no. 4, pp. 267–284, 1998.

[27] J. S. Dahmann and K. J. Baldwin, “Understanding the current state
of us defense systems of systems and the implications for systems
engineering,” in 2008 2nd Annual IEEE Systems Conference, 2008, pp.
1–7.

345

