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Abstract. Proactive adaptation, in which the adaptation for a system’s
reliable goal achievement is performed by predicting changes in the envi-
ronment, is considered as an effective alternative to reactive adaptation,
in which adaptation is performed after observing changes. When predict-
ing the environmental changes, the prediction may be uncertain, so it is
necessary to verify and confirm an adaptation’s consequences before ex-
ecution. To resolve the uncertainty, probabilistic model checking (PMC)
has been utilized for verification of adaptation tactics’ effects on the goal
of a self-adaptive system (SAS). However, PMC-based approaches have
limitations on the state-explosion problem of complex SAS model verifi-
cation and the modeling languages supported by the model checkers. In
this paper, to overcome the limitations of the PMC-based approaches,
we propose an efficient Proactive Adaptation approach based on STA-
tistical model checking (PASTA). Our approach allows SASs to mitigate
the uncertainty of the future environment, faster than the PMC-based
approach, by producing statistically sufficient samples for verification
of adaptation tactics based on statistical model checking (SMC) algo-
rithms. We provide algorithmic processes, a reference architecture, and
an open-source implementation skeleton of PASTA for engineers to apply
it for SAS development. We evaluate PASTA on two SASs using actual
data and show that PASTA is efficient comparing to the PMC-based
approach. We also provide a comparative analysis of the advantages and
disadvantages of PMC- and SMC-based proactive adaptation to guide
engineers’ decision-making for SAS development.

Keywords: Self-adaptive system · Proactive adaptation · Statistical
model checking · Environmental uncertainty

1 Introduction

As the complexity of an environment that affects a system’s goal achievement in-
creases, analyzing the environment becomes important for reliable goal achieve-
ment. The environment, such as user traffic and outdoor temperatures, can
change over time [15,29]. Full anticipation of environmental changes at the sys-
tem design time is challenging and often impossible [6,9]. Systems are required
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to be self-adaptive so that they change their behaviors and structures accord-
ing to the environmental changes at runtime. To realize this, numerous design
approaches [11,13,14,16] have been proposed based on the MAPE feedback loop
[18]. These adaptation processes involve the continual monitoring and analysis
of the environment as well as the planning and execution of the adaptation.

For most existing approaches, adaptation has been reactively triggered by
system failures or changes in the environment [12,31,33]. Other adaptation ap-
proaches, known as proactive or predictive adaptation, have emerged, which
have proven to be more effective than reactive adaptations in a changing envi-
ronment by predicting changes in advance [2,24,26]; however, the prediction of
environmental changes is uncertain, so the uncertainty affects the consequences
of proactive adaptation. To resolve the uncertainty, probabilistic model checking
(PMC) was utilized in some studies for the verification of adaptation tactics and
their effects on the system’s adaptation goal [5,26,27,28].

PMC-based approaches are a major method used for proactive adaptation;
however, PMC may be not appropriate for the verification of large and com-
plex self-adaptive system (SAS) models due to the state explosion problem.
PMC requires a high verification cost in time and memory to fully examine
the given probabilistic models, so the verification of complex SAS models and
adaptation tactics may fail due to time and memory constraints. In addition,
modeling languages supported by probabilistic model checkers must be used for
the modeling of the SAS and the environment. Engineers must be familiar with
modeling languages, such as Markov chains, Markov decision processes, or au-
tomata, that model checkers can interpret [21]. To overcome the limitations, we
propose an efficient proactive adaptation approach based on statistical model
checking (SMC) that consumes a smaller verification resource than PMC and
only requires simulation results of system models without limiting languages.

Our Proactive Adaptation approach based on STAtistical model checking
(PASTA) offers the following contributions:

– We propose a proactive adaptation approach utilizing SMC to eliminate the
uncertainty of the future environment faster than PMC for the verification
of adaptation tactics.

– We provide algorithmic processes, a reference architecture, and an open-
source implementation skeleton of PASTA for developers who will apply
PASTA to SAS development.

– Based on evaluations using actual data, we also provide a comparative anal-
ysis of the advantages and disadvantages of PMC- and SMC-based proactive
adaptation to guide engineers’ decision making.

The remainder of this paper is organized as follows. Section 2 introduces
related work of proactive adaptation. Section 3 provides the background knowl-
edge of SMC. Section 4 presents an illustrative example. Section 5 introduces our
PASTA approach. Section 6 evaluates PASTA based on two SASs with actual
data. Section 7 reveals the threats and validity of our work. Section 8 concludes
the paper.
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2 Related Work: Proactive Adaptation

Numerous studies on proactive or predictive adaptation have been conducted
to address issues related to changing environments [3,20,24,25]. As opposed to
reacting to changes in the environment or system, predicting and responding to
the predicted situations could be more difficult but more effective in prevent-
ing system failures and meeting requirements. Many case studies on proactive
adaptation have been conducted, and it has been demonstrated that proactive
adaptation outperforms reactive adaptation in terms of the system’s adaptation
goal [2,10,20]. For proactive adaptation, the prediction of the future environment
is uncertain, so approaches utilizing probabilistic model checking (PMC), which
verifies the property satisfaction of probabilistic model, have been proposed to
provide verified and trustworthy proactive adaptation results [5,26,27,28]. The
main process of PMC-based proactive adaptation is illustrated in Fig. 1. Core
of the process are the formal modeling of the future environment, system, and
adaptation tactics, and the verification of the models to identify an optimal
adaptation tactic for adaptation goal achievement. However, PMC is not appro-
priate for the verification of large and complex models due to its state explosion
problem. It requires exhaustively examining all possible states of SAS models
to verify adaptation tactics. It also requires engineers to develop SAS models
written in modeling languages that model checkers can support. To tackle the
limitations, as an alternative to PMC-based approaches, which have been the
major trend of proactive adaptation, in this paper, we propose a statistical model
checking (SMC)-based proactive adaptation approach [19,23,34].

Fig. 1. PMC-based proactive adaptation process
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3 Background: Statistical Model Checking (SMC)

We have utilized statistical model checking (SMC) to verify adaptation tactics
at runtime under an uncertain environment. SMC is an efficient technique for
verifying a stochastic model [22,23]. Although PMC exhaustively examines the
model, SMC simulates the model to obtain samples and provides statistical
evidence of the satisfaction or violation of the given property using hypothesis
testing for the samples. In fact, SMC requires only a set of simulation results, so
it can be applied to an executable black-box model or to only a set of simulation
results. The fact that the verification results depend on the quality of the model
is the same as PMC. However, as it is a simulation-based approach, it is known
to be an efficient alternative to PMC in terms of time and memory, performing
verification with a certain confidence [1,19]. In this regard, SMC can be used
effectively for the runtime verification of SAS adaptation tactics with uncertain
environments. The following examples of SMC algorithms are widely used:

– Simple Monte Carlo Simulation (SMCS). This is the simplest and
most intuitive SMC algorithm [1,4]. It estimates the quantitative satisfaction
of a property according to the ratio of samples that satisfy the property in
the overall samples. It requires a fixed number of samples from the user.

– Single Sampling Plan (SSP). The SSP [34] tests a hypothesis H : p ≥ θ
with fixed-size samples, where p is the probability that a system meets a
given property and θ is the verification threshold of p. The user provides two
error bounds α (0 ≤ α ≤ 1) and β (0 ≤ β ≤ 1) of false negatives and false
positives, respectively. Within the given error bounds, the SSP estimates p
to accept or to reject H. The detailed algorithm can be found in [19,23,34].

– Sequential Probability Ratio Test (SPRT). Similar to the SSP, the
SPRT [32] tests a hypothesis H within the given error bounds, but the num-
ber of samples is determined automatically. It simulates the target system
to obtain a sample, and iterates the simulations to generate sufficient sam-
ples until it can accept or reject H within a given error bound. The detailed
algorithm can be found in [19,23,34].

For the PASTA approach, an SMC algorithm is selected and used to obtain
statistical evidence of an adaptation tactic’s performance in a future environment
to evaluate possible tactics and to identify the optimal tactic at runtime.

4 Illustrative Example

We illustrate PASTA using an adaptive air condition control system as an ex-
ample. The system monitors indoor and outdoor air conditions, including tem-
perature and humidity, and adaptively controls the indoor condition for a given
target condition. Planning an adaptive air condition control with an immediate
reaction to the monitored indoor condition can aid the system in achieving its
goal; however, the indoor air conditions may change over time due to the influ-
ence of the outdoor air conditions, as shown in Fig. 2. If the adaptation plan
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is made without taking the environmental change into account, the adaptation
consequences may differ from the expectations, and thus there could have been
a better adaptation tactic that was not chosen. The air condition control system
developed by the PASTA approach forecasts future air condition changes and
selects an optimal adaptation tactic whose adaptation consequences are verified
by SMC at runtime. Throughout this paper, we will describe our approach using
this example.

Fig. 2. Adaptive air condition control system

5 Proactive Adaptation Based on Statistical Model
Checking

5.1 PASTA overview

We propose the PASTA approach, which is a proactive adaptation, using SMC.
Fig. 3 presents the overall adaptation process. The aim of the approach is to
provide efficient proactive adaptation based on the prediction of environmen-
tal changes and the verification of the adaptation tactics of the SAS. (Step 1)
Initially, PASTA continuously monitors the environment to capture its change
at runtime. (Step 2) It analyzes the monitored (historical) environment data
and forecasts future environmental changes based on its forecasting algorithm.
The prediction or expectation of the future environment is in the form of non-
deterministic possibility, such as the probability density function of future envi-
ronmental conditions. (Step 3) Based on the prediction, a sample of the possible
future environment is made and given to the simulation engine as a simulation
environment. (Step 4) In the given environment, an adaptation tactic is applied
to the system model and simulated to make a sample evaluation of the tac-
tic’s performance. The simulations are repeated until the system obtains the
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statistically sufficient number of samples for the verification of the tactic’s per-
formance for the adaptation goal in the expected future environmental change.
(Step 5) Based on the accumulated samples, the performance of an adaptation
tactic is verified. All adaptation tactics are evaluated repeatedly in the same
manner, and the SAS statistically guarantees the effects of its adaptation tac-
tics. (Step 6 and 7) When all possible adaptation tactics have been evaluated,
an optimal adaptation tactic is chosen and executed. This adaptation process
is continuously repeated to respond to continuous environmental changes. We
describe the PASTA approach in detail based on this adaptation process in the
subsequent sections.

Fig. 3. Overall PASTA process

5.2 Knowledge

Principle. The PASTA approach requires an SAS to accumulate the monitored
environment data. The accumulated historical environment data is analyzed to
predict environmental changes. Furthermore, the system has its current system
model that is an abstraction of the system behavior executable by a simulator.
The model in PASTA is user-specific, and although the modeling language and
system information to be modeled are selected by the engineer, the only require-
ment is that the model is executable to generate simulation logs. The system
model also contains a finite set (space) of possible adaptation tactics that will
be verified. An adaptation tactic is a specification of an adaptation that can be
applied to the SAS and its model, such as a set of configurations. The adap-
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tation goal is also specified in the knowledge. Thus, the optimal tactic for the
adaptation goals will be selected and executed.

Example. The environmental factors of interest in the adaptive air condition
control system are the indoor/outdoor temperature and humidity; therefore, the
monitored environment data at a specific time include values of four factors. The
simulation models imitate the changes of the indoor temperature and humidity
affected by outdoor conditions and the air condition control system’s control
values. The system’s possible adaptation tactics are defined by the system ca-
pabilities of each temperature and humidity control capability. For example, the
system can increase or decrease the temperature and humidity in 0.1◦C and
0.1% increments up to 5◦C and 5%, respectively, in a discrete simulation time
unit. The tactic space is a Cartesian product of the possible temperature and
humidity controls. The adaptation goal is to manipulate the indoor temperature
and humidity to the user’s desired conditions.

5.3 Monitoring Environmental Changes

Principle. (Step 1) The system constantly monitors the environment. The en-
vironment is measured as the values of the environmental conditions observable
by the sensors. The current environmental data are added to the environment
database. The current state of the system is also monitored, and the system
model is kept up to date.

Example. The air condition control system constantly monitors the in-
door/outdoor temperature and humidity. It accumulates the environment data
in its environment database.

5.4 Forecasting Future Environmental Change

Principle. (Step 2) PASTA forecasts future environmental changes based on
the accumulated historical environment data using a data analysis or forecast-
ing techniques. As the given historical environmental data consist of time-series
data, a time-series analysis and forecasting methods, such as random walk [30],
errortrend-seasonal [17], autoregressive integrated moving average model [7], or
any machine-learning techniques, can be applied, and the choice of the fore-
casting methods depends on domain engineers. What is important here is that
the predictions of future environmental changes based on historical data are
uncertain, so the results of the forecasting are non-deterministic expectations,
such as the probability density function of future environmental conditions. This
uncertainty will be resolved by SMC.

Example. The system predicts the outdoor temperature and humidity chan-
ges, which exhibit distinct repetitive patterns (seasonality) at 24-hour intervals.
As the environmental data of this system exhibit distinct seasonality, they can
be predicted naively with a random walk model using seasonal differencing [17].
Based on the historical temperature data and the forecasting algorithm, the
temperature change from the present to a few hours later can be predicted using
the probability density function. For example, if the current temperature at 2
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p.m. is 24◦C, the temperature at 3 p.m. can be expected to change according to
the uniform distribution between 24◦C and 30◦C.

5.5 Planning Adaptation Using SMC

Algorithm 1: PASTA adaptation planning

Input : envPrediction, sysModel, tacticSpace, goalProp
Output: optimalTactic
Procedure

evaluationSheet = [] ;
foreach tactic in tacticSpace do

simulationResultList = [] ;
while !samplesSufficient() do

envSample = makeSample(envPrediction);
simResult = simulate(envSample, sysModel, tactic);
addElement(simulationResultList, simResult);

end
evaluationResult = verify(simulationResultList, goalProp);
addElement(evaluationSheet, (tactic, evaluationResult));

end
optimalTactic = getOptimalTactic(evaluationSheet);

end

Principle. The adaptation planning of the PASTA approach involves search-
ing for the optimal tactic among possible adaptation tactics using SMC, as shown
in Algorithm 1. Evaluating an adaptation tactic using SMC consists of three
steps: sampling environmental changes, simulating adaptation tactics, and veri-
fying the simulation results. (Step 3) The forecasting result is non-deterministic,
so the sample generator produces a deterministic sample of possible future en-
vironmental conditions based on the forecasting result. SMC eliminates the un-
certainty of the nondeterministic future environment by producing statistically
sufficient samples, while PMC probabilistically verifies a stochastic model. The
number of samples is determined depending on the SMC algorithms, as explained
in the background section. (Step 4) The simulator takes the sample environment,
the system model, and an adaptation tactic as inputs. It applies the given tactic
to the system model, simulates the system in the sample of the future envi-
ronment, and returns a simulation result logs that represents the effects of the
adaptation tactic in the future environment. (Step 5) The verifier receives the
numerous simulation results and evaluates the tactic’s performance for the adap-
tation goal represented as a verification property. This process is performed for
all adaptation tactics, and (Step 6) the optimal tactic is selected based on all
evaluation (verification) results. Therefore, the planning time required for an
adaptation depends on the number of tactics, the number of required samples,
and the time for a single simulation of the model.
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Example. Based on the predicted range of the temperature change at 3 p.m.
(24◦C ∼ 30◦C), the samples of the future outdoor temperature (for example,
25◦C, 27◦C, and 29◦C) are randomly selected by an SMC algorithm. The sys-
tem model and an adaptation tactic (for example, lower the indoor temperature
by 3◦C) under the current evaluation are simulated with the sample environ-
ments, respectively. Based on the simulation results, the verifier evaluates the
adaptation results of the indoor temperature control. In this example, the av-
erage distance between the target condition and the current condition is used
as a verification property representing an adaptation goal, but the maximum
distance indicating the worst case, the presence or absence of events occurring
with small probabilities, or any temporal logic can be used as verification prop-
erties [19,23,34]. When all possible temperature and humidity control tactics are
verified (evaluated), the optimal one is selected.

5.6 Executing Adaptation

Principle. (Step 7) The chosen optimal adaptation tactic is applied to the
managed system by the actuators of the system.

Example. The adaptive air control system operates the selected optimal
temperature and humidity control. The controls affect the indoor conditions
through the system’s actuators.

5.7 PASTA Implementation

We also provide a PASTA reference architecture in Fig. 4 for the implementation
of this approach. It is a layered architecture of an SAS with the PASTA approach.
In the interaction layer, PASTA monitors the environment and managed system
through the sensor and affects them through the actuators, like typical SASs. In
the data analysis layer, there is a forecasting engine for the prediction of environ-
mental changes and a knowledge management module for keeping the knowledge
of the system up-to-date at all times. In the adaptation planner layer, a module
searches for the optimal adaptation tactic through interactions with the adap-
tation verification layer. In the adaptation verification layer, the SMC module
verifies an adaptation tactic governing the sample generator, the simulator, and
the verifier.

The sample generator produces samples of the future environment based on
the prediction of the forecasting engine. The simulator simulates the system
model with an adaptation tactic in the given sample future environment. The
verifier analyzes the simulation results to check the adaptation goal achieve-
ment, such as quality of service or invariant properties. In the knowledge layer,
there is an environment database, a system model manager, an adaptation tac-
tic repository, and an adaptation goal manager. This layer interacts with the
others, providing and updating the knowledge of the SAS. This architecture is
a reference, so it includes the essential components of an SAS with the PASTA
approach and can be extended.
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Fig. 4. PASTA reference architecture

In addition, to support engineers who develop SASs based on the PASTA ap-
proach, which was explained in the previous sections, we implemented a PASTA
skeleton based on the reference architecture with guiding comments and released
the source code on an open-source repository1. The skeleton is available in Java
and Python. Engineers should write application-specific codes following com-
ments tagged with “todo”. The class diagram of the skeleton is presented in Fig.
5. An adaptation is activated by the “adaptManagedSystem” operator. It pro-
motes easier PASTA implementation, allowing for the utilization of third-party
libraries or tools for some components, such as the forecasting engine or the
SMC module.

6 Evaluation

6.1 Research Questions

We demonstrate the feasibility of applying the PASTA approach as one efficient
alternative to PMC-based proactive adaptation to SAS development. There are
three research questions addressed.

RQ1: (Cost efficiency of PASTA) How fast is PASTA’s adaptation
planning? PASTA leverages SMC for efficient adaptation verification at run-
time. Although almost all existing proactive adaptation approaches utilize PMC
for the runtime verification of adaptation tactics, the PASTA approach is one of
the most efficient alternatives to PMC-based proactive adaptation approaches.
To determine the efficiency of PASTA, we compare the application planning time
of PASTA and the PMC-based adaptation. We confirm the differences in time
consumption between SMC- and PMC-based approaches in solving proactive
adaptation problems of the same complexities.

RQ2: (Adaptation planning accuracy of PASTA) How accurately
does PASTA search for the optimal adaptation tactic? PMC formally
examines a probabilistic model and verifies whether it satisfies the given proper-
ties; however, SMC examines the given model with numerous sample simulation

1 https://github.com/yongjunshin/PASTA

https://github.com/yongjunshin/PASTA
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Fig. 5. Class diagram of the PASTA skeleton

results, so it returns the statistical evidence of the model’s properties and thus
has the inevitable limitation that it can return inaccurate verification results
limited to the finite number of samples. It is known that SMC can produce
results similar to PMC [19,23,34], and for this research question, we compare
the similar proactive adaptation planning results of PASTA with the planning
results of the PMC-based approach. We determine how much accuracy has been
lost by the cost savings identified in RQ1 as well as whether the loss of accuracy
is acceptable.

RQ3: (Adaptation performance of PASTA) How effective is the
adaptation goal achievement performance of PASTA? For research ques-
tion 3, we examine whether the PASTA approach is actually effective in achiev-
ing the adaptation goals of SASs. To evaluate the adaptation performance of
PASTA, we compare the simulation execution results of approaches taking no
adaptation, reactive adaptation, PMC-based proactive adaptation, and PASTA.

6.2 Evaluation Setup

We evaluate the PASTA approach using two example SASs. One is the adap-
tive air condition control system, the illustrative example of this paper, and the
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Fig. 6. Adaptation tactic of traffic signal controller

other is an adaptive traffic signal controller of an intersection. The flow of cars in
cities changes with the passage of time, which causes traffic congestion. A smart
traffic signal controller that automatically controls traffic flow is a good exam-
ple of applying proactive adaptation because changes in traffic conditions can
be predicted based on historical data. Our signal controller predicts the traffic
volume in an intersection and identifies an optimal configuration of signal pat-
terns that minimizes the number of waiting vehicles. An actual signal controller
is abstracted, and durations of signal patterns are dynamically controlled, as
shown in Fig. 6. We applied PASTA to the two cases of different complexities
and simulated them based on actual data acquired from public data repositories
to make them realistic. Detailed descriptions of the two SASs and the evaluation
setup are provided in Table 1.

We compared the adaptation cost, accuracy, and performance of the PASTA
approach with the PMC-based proactive adaptation approach. The PMC-based
proactive adaptation approach was implemented following a pioneering paper
[26]. PRISM, a widely used probabilistic model checker, was utilized in the im-
plementation [21]. We used default hybrid computation engine. The models of
environments, systems, and tactics were specified in Markov decision processes
(MDPs), and the adaptation goals were specified in the reward-based properties
of the MDPs. As in paper [26], the following environmental changes have been
predicted based on the data, and the PRISM modules have been constructed and
verified based on the prediction. Thus, the optimal adaptation tactic has been
found. In addition to the PMC-based approach, non-adaption and reactive adap-
tation approaches were also compared in terms of a system’s goal achievement.
For the PASTA approach, SMCS, the naivest SMC algorithm as explained in
the background section, was implemented and evaluated by varying the number
of samples used for the verification from 10 to 10000 (10, 100, 1000, 2000, ...,
9000, 10000).

6.3 Evaluation Results

RQ1: We measured and compared the time spent on adaptation planning for
both case systems using the PASTA and PMC-based approaches. The adap-
tation planning time includes modeling or sampling time and probabilistic or
statistical verification time to identify the optimal tactic. Figs. 7 and 8 show the
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Table 1. SASs for evaluation

Adaptive air condition con-
trol system

Adaptive traffic signal con-
troller

Environment
Temperature and humidity condi-
tion

Car inflow to an intersection

Environment
complexity

2 environmental factors (tempera-
ture, humidity)

12 environmental factors (the
number of car inflow from 4 source
roads to other 3 destination roads:
12 directions)

Source of
real envi-
ronmental
data

Open weather data portal of -
South Korea (https://data.kma.
go.kr) - 2018 hourly weather data
of Seoul

Open traffic data of Daegu, South
Korea (https://car.daegu.go.kr) -
2018 Daily&Hourly Traffic data of
an intersection in Daegu

System Indoor air condition controller Traffic signal controller

System
model

Model of changing indoor temper-
ature and humidity affected by en-
vironment conditions and the sys-
tem’s control

Model of changing the number of
waiting cars in the intersection af-
fected by car inflow and traffic sig-
nals

Sensors
Temperature sensor, humidity
sensor

Traffic flow sensors for each 12 di-
rections

Actuators
Temperature control actuator, hu-
midity control actuator

Traffic lights

Adaptation
tactic

Temperature control value, hu-
midity control value

Configuration of traffic signal pat-
tern duration

Size of the
adaptation
tactic space

101 possible control values for
each temperature and humidity by
the system capability (-5, -4.9, ...
+4.9, +5 (◦C, %))

6,188 possible configurations of
traffic signal pattern duration
(Fig. 6)

Adaptation
cycle

1 hour 1 hour

Adaptation
goal

Target air condition (25, 50) - fol-
lowing ASHRAE comfort zone [8]

Minimizing the number of waiting
cars

Tactic
evaluation
criteria

Average difference between con-
trolled indoor condition and tar-
get condition

Average of the number of waiting
cars

Forecasting
method

Random walk model with seasonal
differencing [30]

Polynomial regression

evaluation results for each system. The reported planning time is the average
of 100 repeated experiments. The adaptation planning time for the PMC-based
approach is constant, but the time for PASTA increases in proportion to the
number of samples used for the SMC because the time for a single simulation
is almost constant. Unfortunately, the traffic signal controller was not able to
obtain adaptation planning results using PMC with a 2G memory because its
models and tactics were more complex than the air condition control system so
consume larger verification resource. Therefore, for the traffic signal controller,
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Fig. 7. Adaptation planning cost - Air condition control system

Fig. 8. Adaptation planning cost - Traffic signal controller

the adaptation planning time for the PMC-based approach was not assigned;
however, both systems confirmed that PASTA would complete adaptation plan-
ning much faster than the PMC-based approach. It was also confirmed that the
adaptation planning time of PASTA is proportional to the number of samples
and the complexity of the adaptation problem.

RQ2: To confirm the similarity of the optimal tactics that the PASTA and
PMC-based approaches found, we compared the optimal tactics returned by the
PASTA and PMC-based approaches in the same situation. To quantify the simi-
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larity, we defined two criteria. If the two tactics were the same, they were defined
as identical, and if they were adjacent in terms of the tactic specifications, they
were defined as similar. For example, for the air condition control system, tem-
perature control tactics +3◦C and +3.1◦C were adjacent because the tempera-
ture control unit is 0.1C based on the system’s capability, and the probability
that arbitrarily two tactics are adjacent is less than 2%. Because the samples
used by SMC are randomly generated, we repeated the PASTA experiments 100
times and report the percentage of identical or similar tactics compared to the
tactic returned by the PMC-based approach. Because the traffic signal controller
could not find the optimal tactic utilizing PMC, only the experimental results
of the air condition controller are shown in Fig. 9. We could see that PASTA
always found the same or similar optimal tactic as the PMC-based approach
except when using 10 samples; however, one limitation of utilizing SMC is that
regardless of how many samples we increased, we could not always obtain the
same results as the PMC-based approach’s results, which is considered an oracle.
This case system returned accurate results at approximately 50% on average.

Fig. 9. Adaptation planning accuracy - Air condition control system

RQ3: For RQ1 and RQ2, we showed that PASTA can quickly find a sub-
optimal adaptation tactic that is similar to the PMC-based approach’s result.
For RQ3, we obtained simulation results to confirm the adaptation performance
of the PASTA approach in comparison with non-adaptation, reactive adapta-
tion, and PMC-based proactive adaptation. As shown in Fig. 10, the goal of the
air condition control system was to keep the temperature at 25◦C, and proac-
tive adaptation approaches showed a better adaptation performance than other
strategies. In addition, the PASTA and PMC-based approaches exhibited a simi-
lar performance because PASTA has always made similar adaptation decisions to
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Fig. 10. Adaptation performance - Air condition control system

Fig. 11. Adaptation performance - Traffic signal controller

the PMC-based approach. In Fig. 11, the goal of the traffic signal controller was
to reduce the number of vehicles waiting at the intersection as much as possible,
and proactive adaptation using PASTA showed the best performance. These two
results demonstrate that proactive adaptation outperforms reactive adaptation
and PASTA shows similar adaptation performance to the PMC-based approach
with smaller verification cost.
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Table 2. Comparison of proactive adaptation approaches

PMC-based approach SMC-based approach (PASTA)

Forecasting time Forecasting time
Adaptation
cost

Modeling time (relatively high) Sampling time (relatively low)

Probabilistic verification time
(relatively high)

Statistical verification (Simulation
+ hypothesis testing) time (rela-
tively low)

Adaptation
accuracy and
performance

Regarded as an oracle (high,
limited to the quality of the
models)

Provides similar adaptation results
to PMC-based adaptation (rela-
tively low, limited to the quality of
the samples and models)

Pros
The optimal adaptation tactic
can be found.

A sub-optimal adaptation tactic can
be found with a lower adaptation
cost. If the model can be simulated,
it is not limited to a particular mod-
eling language.

Cons

High adaptation cost is re-
quired. Modelling language
is dependent on the model
checker.

The adaptation result is not fully
trustworthy.

Proper
application

Safety-critical system Real-time system

We compared two approaches of proactive adaptation: PMC-based and SMC-
based (PASTA) approaches. As we confirmed in our evaluation, the two ap-
proaches have their own advantages and disadvantages, so engineers should
carefully decide which to choose for their SAS development. We summarized
our insights regarding their characteristics in Table 2 to guide engineers’ de-
cision making. As we emphasized, the SMC-based approach makes adaptation
decisions, verifying a system’s adaptation tactics faster than the PMC-based ap-
proach. In addition, if it is possible to generate simulation results from the given
models, the modeling language is not limited to the model checker; however, it
is indubitable that an adaptation decision made by the SMC-based approach
may not be globally optimal. Therefore, the SMC-based approach may not be
suitable for some safety-critical systems, and the PMC-based approach could
be the better choice if the trustworthiness of the system is the most important
concern. For SASs requiring a lower adaptation cost, such as real-time systems,
PASTA is more appropriate than the PMC-based approach.

7 Threats to Validity

One threat is the selection of the SMC algorithm. We selected SMCS to demon-
strate the adaptation performance when selecting the simplest SMC algorithm.
SMCS is suitable for explicitly indicating SMC-based adaptation costs affected
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by the number of samples, and all other SMC algorithms have similar character-
istics. To reduce this threat, we also implemented SSP and SPRT and compared
them to the PMC-based approach, and both showed similar cost, accuracy, and
performance differences. Therefore, for this paper, only SMCS was selected and
explained by varying the number of samples.

Another threat is the implementation of the PMC-based adaptation ap-
proach. We implemented the PMC-based approach directly following paper [26].
This threat was reduced because the authors published all the structures and
codes of the PRISM module for the implementation of the approach. We im-
plemented two case systems according to the PRISM module code shown in
the paper. For a fair comparison, environment, system, and adaptation tactic
spaces of the same complexities were given to both the PMC-based and PASTA
approach.

8 Conclusion

We have proposed PASTA, a proactive adaptation approach using SMC, that
is one efficient alternative to PMC-based proactive adaptation. We applied the
PASTA approach to two realistic SASs. Through experiments based on actual
data, we confirmed that PASTA would make an adaptation decision similar to
the PMC-based proactive application approach in a shorter time. We then con-
firmed that the adaptation decision is more effective in achieving the system’s
goals than non-adaptation, reactive adaptation, and the PMC-based approach.
Currently, PMC-based approaches are considered the major trend in proactive
adaptation, but in this paper, we showed that the SMC-based proactive adap-
tation approach can be an efficient alternative. In addition, the algorithmic pro-
cesses, reference architecture, and open-source skeleton of PASTA proposed in
this paper will be of substantial help to developers who wish to apply PASTA to
SAS development. This study was primarily conducted to validate the PASTA
approach, but in the future, we plan to study methods such as effective sampling
and adaptation space reduction for a more effective PASTA approach, and we
also plan to apply PASTA to actual running systems.
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