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Abstract—Many modern systems interact with both cyber
and physical environments. They are complex systems in which
multiple constituent systems work together to achieve higher-
level goals. These systems are called cyber-physical systems of
systems (CPSoS). As the interest in CPSoS, such as platooning
vehicles and robot-based smart factories, increases, engineering
for adaptive goal achievement of CPSoS is needed. Common
exemplars of a research community can facilitate research;
however, existing exemplars of CPSoS are mostly based on
virtual simulations. Although this allows researchers to share
experimental scenarios and environments, it has the limitation
that it is difficult to conduct experiments that reflect actual
physical environments. To overcome this limitation, we propose
a physical exemplar of an industrial CPSoS, called Platooning
LEGOs, which employs platooning technology that is actively
being developed by the autonomous driving industry. A platoon,
in which independent vehicles drive together, achieves SoS-level
goals through adaptive behavioral decisions of the vehicles. This
exemplar provides a physical experimental environment that can
be implemented with LEGOs. A simple LEGO assembly allows
the use of real data from sensors and actuators, facilitating a
focus on software engineering without considerable mechanical
knowledge. Moreover, as this is an open exemplar, researchers
can implement the same physical experimental environment
with a limited budget and expand its physical or software
elements. We provide system descriptions, physical and software
implementation manuals, and sample experimental results of
Platooning LEGOs.

Index Terms—Platooning LEGOs, Self-adaptive system,
Cyber-Physical System, System-of-Systems, Cyber-physical
System-of-Systems, Lego, Exemplar, Experimental environment

I. INTRODUCTION

Cyber-physical systems (CPS), such as autonomous vehi-

cles, play an increasingly important role in modern society, at-

tracting considerable interest in CPS engineering [1]. Because

not only virtual information but also physical conditions or

people must be considered, it is difficult to fully anticipate

uncertainties in the environment of a CPS at the time of
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designing. Therefore, a CPS essentially requires adaptation

functionality that can consistently achieve system goals in

uncertain environments.

Another characteristic of some modern systems is that they

form systems-of-systems (SoS) in which multiple independent

systems cooperate to achieve higher-level goals that cannot

be achieved by a single system [2]. Examples of SoS are

clusters of vehicles or drones, smart factories where many

robotic systems work together, and complex defense systems

with multiple weapon systems. As the size and influence of

SoS increase, an important objective of SoS engineering is

to ensure that SoS goals are achieved stably regardless of

uncertainty.

In this context, cyber-physical systems-of-systems (CPSoS)

require engineering for collaborative adaptations in the un-

certain physical world [3]. To promote active research and

share common adaptation problems, the Software Engineering

for Adaptive and Self-Managing Systems (SEAMS) research

community has accumulated several exemplars1 [4]–[13].

However, there are few exemplars for adaptation engineering

of CPSoS. Moreover, while most exemplars have provided

simulators, studying CPS only in simulations without physical

environments has limitations in reflecting reality. Furthermore,

building a physical experimental environment often requires

specialized domain knowledge and entails high costs.

To meet the need for a CPSoS exemplar to consider the

physical environment realistically for adaptation engineering,

we propose an open physical exemplar called Platooning
LEGOs. As a representative example of CPSoS, we selected

a platooning technology for autonomous vehicles [14]. Pla-

tooning is an industrial technology that is actively being

developed by vehicle manufacturers. Vehicles with the same

destination form a platoon through communication, drive in a

line to reduce air resistance, thus reducing fuel consumption,

and adjust the distances between them to reduce road occu-

pancy. Platooning is self-adaptive to uncertain situations in

a driving environment. Our exemplar implements platooning

1SEAMS exemplar repository:
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/
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using programmable LEGO robots. Unlike the cases where

platooning robots have been implemented and used in exper-

iments privately [15]–[17], we propose Platooning LEGOs as

a reproducible and expandable exemplar that allows anyone to

build the same physical experimental environment for CPSoS

engineering. In summary, our Platooning LEGOs exemplar

contributes to the field as:

• a CPSoS exemplar: an industrial adaptation model prob-

lem (platooning) representing both CPS and SoS,

• a physical exemplar: a physical experimental environment

producing real data from physical sensors and actuators,

• an open exemplar: an exemplar that allows anyone to

build the same physical experimental environment with a

limited budget using LEGOs and expand its physical and

software elements.

The remainder of this paper is organized as follows. Sec-

tion II describes related exemplars. Section III presents our

Platooning LEGOs. Section IV describes how to implement

both physical and software artifacts of this exemplar. Section V

presents an experiment of a sample scenario. Section VI

concludes the paper.

II. RELATED EXEMPLARS

More than 20 diverse exemplars have thus far been proposed

by the SEAMS community for self-adaptive system (SAS)

engineering1. The target SAS of approximately half of these

exemplars is CPS or the Internet of Things [4]–[13]. About

half of the CPS exemplars deal with SoS [9]–[13]. In the traffic

domain, there are exemplars for adaptive traffic optimization

with cooperating vehicles [9], [10]. Other exemplars present

collaborative delivery of goods by independent drones [11]

and a reconnaissance mission by a team of unmanned aerial

vehicles [12]. There is also an exemplar for a self-adaptive

ecosystem composing smart agents to control the global food

population [13]. Unfortunately, except for DeltaIoT [6] allow-

ing remote access to a real IoT system, existing exemplars only

support virtual simulations of the target SAS, which makes it

hard to reproduce real physical environments in experiments.

Unlike previous studies, our Platooning LEGOs exemplar

represents an open physical experimental environment of an

industrial vehicular CPSoS.

III. PLATOONING LEGOS

A. SoS-level overview

Platooning is a technology currently being developed by

real industries; therefore, levels and functions vary according

to the manufacturer. We refered to demonstrations of various

platooning techniques and simplified core features that can

be implemented using LEGOs. Figure 1 shows an overview

of our Platooning LEGOs. Each platooning vehicle is a

programmable LEGO robot. A vehicle can independently drive

in a lane, control its driving speed, change lanes, and detect

obstacles ahead. Each vehicle transmits a set of raw data that

include its current driving speed, lane, and forward distance.

The platoon comprises three vehicles. The first vehicle is the

Fig. 1. Overview of Platooning LEGOs

TABLE I
ADAPTATION GOALS OF THE Platooning LEGOs

Goal Description Evaluation metric
(Hard)
Collision
prevention

All vehicles of the platoon shall
not collide with any vehicle or
object.

(d1 > 0) ∧ (d2 > 0)

∧ (d3 > 0)
(Hard)
Driving in
a row

Except when changing lanes, all
vehicles of the platoon must drive
in a row on the same lane.

(l1 = l2) ∧ (l2 = l3)

∧ (l3 = l1)
(Soft)
Road
occupancy
minimiza-
tion

In order to reduce road occupancy,
the distance between vehicles in
the platoon should be minimized
as much as possible.

d2 + d3+

(3 ∗ vehicleLength)

(Soft)
Travel
speed
maxi-
mization

In order to shorten the travel
time, the average driving speed of
the platooning vehicles should be
maximized within road limits.

s1 + s2 + s3

3

leader, which knows the conditions ahead. The second vehicle

is a follower driving along the path of the leader and relaying

the leader’s state to a third vehicle, another follower, which

follows the second vehicle and is outside the leader’s com-

munication range. As unknown objects or situations exist in a

road environment, each autonomous vehicle makes decisions

on its speed and lane so that the platoon adaptively achieves

its SoS-level goals in an uncertain environment.

The SoS-level adaptation goals of the platoon are sum-

marized in Table I. There are two “hard” goals (with clear

satisfaction criteria) and two “soft” goals (without clear-cut

criteria). If the two hard goals are achieved, the platoon tries

to achieve the soft goals. The first hard goal is to prevent

a collision with another vehicle or other object. The second

hard goal is to drive in a row in the same lane to minimize

air resistance and thus fuel consumption. The first soft goal is

to minimize road occupancy for smooth traffic flow. This is
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TABLE II
ACTIVITIES OF VEHICLES

Vehicle Activity

Vehicle 1:
Leader

Monitor & Receive:
• Forward distance (Ultrasonic sensor)
• Driver’s manual command (Button)
Analyze & Plan:
• Driving speed decision
• Driving lane decision
Execute:
• Setting the driving speed
• Changing/keeping the driving lane
Send:
• msg1 (to vehicle 2)
– Current driving speed
– Current driving lane
– Current forward distance

Vehicle 2:
Follower

Monitor & Receive:
• Forward distance (Ultrasonic sensor)
• Peers’ situation (msg1) (Bluetooth)
Analyze & Plan:
• Driving speed decision
Execute:
• Setting the driving speed
• Changing/keeping the driving lane
Send:
• msg2 (to vehicle 3)
– Current driving speed
– Current driving lane
– Current forward distance

Vehicle 3:
Follower

Monitor & Receive:
• Forward distance (Ultrasonic sensor)
• Peers’ situation (msg2) (Bluetooth)
Analyze & Plan:
• Driving speed decision
Execute:
• Setting the driving speed
• Changing/keeping the driving lane
Send:
• None

achieved by minimizing the distances between the platooning

vehicles by speed adjustments. The second soft goal is to

maximize the platoon’s driving speed to minimize travel

time. The data-based logical or numeric evaluation metrics

of the goals are displayed in Table I. In cases in which the

experimental data cannot accurately show whether the goals

are achieved in a physical environment (e.g., a side collision of

a vehicle), users can observe the experiment itself in addition

to the data to determine whether the goals are achieved.

B. Self-adaptive constituent vehicles

In this section, we describe the behavior of each constituent

vehicle. Each vehicle is autonomous and stand-alone. The ve-

hicles’ activities are summarized in Table II. The activities are

organized as a MAPE (Monitor, Analyze, Plan, and Execute)

loop of SAS [18]. Although in this work we implemented an

independent MAPE loop in each vehicle without a coordinator,

different types of MAPE patterns for SoS can be used in

our exemplar [19]. Our LEGO vehicles are equipped with

three kinds of sensors: a color sensor for line following, an

ultrasonic sensor for obstacle detection, and a maximum of

two buttons for reception of the driver’s manual commands.

We assume the color sensor for line following to be a basic

function for autonomous driving, and it is thus not described

in Table II. Only driving lane and speed adaptations are

described.

The first vehicle (leader) senses forward distances to detect

accidents or other obstacles. It can also sense the driver’s

commands, such as manual control of speed or lane, through

buttons. In some real examples of platooning, a leader vehicle

allows manual driving. However, even if there is no manual

command, it can automatically adapt the driving speed and

lane. Moreover, it sends its current driving speed, lane, and

forward distance to a follower vehicle.

The second vehicle (follower) senses forward distances and

receives the leader’s current state. However, unlike the leader,

when it is part of a platoon, its steering wheel and accelerator

cannot be used, and only adaptive cruise control is allowed.

In real cases, a follower can leave or join the platoon at the

driver’s command, but the exemplar described herein only

covers the joined state of the platooning protocol. If a user

wishes to allow manual command of a follower vehicle, it

can be expanded using buttons. Based on the monitored and

received situation of the platoon, the second vehicle follows

the leader’s lane and decides the speed.

The third vehicle (follower) follows the first and second

vehicles. Because the leader’s communication range may

be limited, the third vehicle only receives messages from

the second vehicle. This communication topology is called

“predecessor following” [20]. Although all activities of the

third vehicle are subsumed by the second one, it is still an

independent constituent system, and it adapts its speed to

contribute to the platoon’s goals.

C. Environmental uncertainties of the platoon

The environmental uncertainties that can be addressed by

Platooning LEGOs are summarized in Table III. The platoon

has limited knowledge of the peers’ situation, the physical

road environment, such as other vehicles or accidents, and

human drivers’ behavior. It is almost impossible to enumerate

all possible situations of the platoon at the time of designing.

Therefore, the platoon should be adaptive to the uncertainty

of the environment. Because Platooning LEGOs provide a

physical experimental environment, realistic physical events

can be simulated in experiments. Moreover, the platoon in-

teracts with the environment through sensors and actuators.

Actual interactions may differ from the expected interactions

due to sensing/actuating noise or failure. Such incomplete in-

teractions can also produce uncertain platoon operation results.

To simulate diverse settings and address various uncertainties,

sensor/actuator noise or failure rates can be introduced to

experiments.

IV. IMPLEMENTATION

A. Physical implementation

1) Vehicle implementation: Each vehicle is an independent

LEGO MINDSTORMS EV3 robot (The LEGO Group, Den-

mark), as shown in Figure 2. Each robot is equipped with two

main wheels connected to motors and one auxiliary wheel. It
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TABLE III
ENVIRONMENTAL UNCERTAINTIES ADDRESSED BY THE Platooning LEGOs

Environmental uncertainty Subcategory Description

Uncertainty due to the
limited knowledge of
the environment

Unpredictable peers’
situations

Each vehicle determines its behavior based on the peers’ situation received through a network
connection, but the possible peers’ situations cannot be fully anticipated in advance.

Unpredictable physical
environment

Unexpected physical conditions, such as an interruption by another vehicle or an accident on
the road, may occur, which cannot be predicted.

Unpredictable human
behavior

A human driver can give a direct command to a vehicle through buttons, and the behavior may
not be accurately predictable and may interfere with the achievement of the platoon’s goals.

Uncertainty due to the
incomplete interaction
with the environment

Inaccurate sensing
The sensed or received information may not accurately reflect the actual environmental situation
because of sensor noise or message transmission/reception delays.

Sensing failure
The vehicles may fail to obtain information on the environment because of the broken physical
sensors or message loss.

Inaccurate effecting
The planned adaptation behavior may not be ideally applied to the physical world because of
the motor’s limited precision or physical constraints such as frictional force of the road.

Effecting failure
With a very low probability, the planned action may not be executed due to a connection error
with the motor or other unexpected causes.

Fig. 2. A LEGO Mindstorms EV3 vehicle

Fig. 3. Road environment

is also equipped with a color sensor and an ultrasonic sensor to

sense the road and the situation in front of it. Messages from

other vehicles are received via Bluetooth, which is embedded

in the EV3. A button can also be attached for commands from

a human driver, such as manual lane change or acceleration.

All physical implementations are very simple and follow

the building instructions provided by the manufacturer. The

instructions and manuals of the Platooning LEGOs have been

Fig. 4. A physical implementation of Platooning LEGOs

uploaded to our GitHub repository2.

2) Road implementation: To simulate platooning on an

endless highway, engineers print circular roads, as shown in

Figure 3, and attach them to a floor. There are an outer and an

inner lane. Vehicles drive clockwise following the boundaries

of the black line. When a vehicle decides to change lanes, it

turns in the direction of the new lane and drives until it finds

a white area. The road implementation material has also been

uploaded to our repository2. The simulated road environment

can be easily replicated using sheets of paper and a space of

only about 2m×2m. Figure 4 shows the vehicles and simulated

road environment. The three vehicles are in the outer lane.

As Platooning LEGOs provides a physical experimental

environment with very simple physical implementations, they

allow software engineers to focus on the vehicles’ software.

The software implementation guide is provided in the next

subsection.on.

B. Software implementation

The vehicles’ software is implemented using a Python

API3. Each vehicle iteratively performs monitoring, analysis,

planning, and execution. A detailed description of each step

is presented in the code skeleton shown in Algorithm 1.

2Platooning LEGOs repository: https://doi.org/10.5281/zenodo.4604167
(https://github.com/yongjunshin/Platooning-LEGOs)

3Mindstorms EV3 API: https://pybricks.github.io/ev3-micropython
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Algorithm 1 A vehicle code skeleton

1: Configuration of sensors, motors, and vehicle
2: data = DataLog(‘time’,‘lane’,‘speed’)
3: watch = StopWatch()
4: while True do
5: time = watch.time()
6: color = colorSensor.reflection()
7: dist = ultrasonicSensor.distance()
8: peerLane = laneMailBoxFrontV ehicle.read()
9: Adaptation of lane and speed

10: vehicle.drive(speed, turnRateFor(lane))
11: laneMailBoxBackV ehicle.send(lane)
12: data.log(time, color, dist, peerLane, lane, speed)
13: end while

1) Monitor & Receive: The lane and speed adaptations are

based on recognition of the road environment and the peer

vehicles’ state. The road environment is monitored by sensors.

A color sensor monitors the floor and returns a color value of

the road (Algorithm 1, line 6). An ultrasonic sensor measures

the distance to objects in front of the vehicle in millimeters

(Algorithm 1, line 7). The peer vehicles’ state is received via

Bluetooth. A vehicle shares a mailbox with another vehicle

and can receive data using the read() function (Algorithm 1,

line 8). For more complex scenarios, additional sensors, such

as touch, gyroscope, and infrared sensors, and mailboxes for

information reception from more peers can be used following

the API3 and our manual and sample codes2.

2) Analyze & Plan: Each vehicle adapts its driving lane

and speed by analyzing the monitored environment, the peers’

state, and its own state (Algorithm 1, line 9). Engineers

can use their own adaptation approaches and analyze their

effectiveness. To guide their implementation, we provide a

code skeleton and the sample code used in our experiment

through our repository2.

3) Execute: A vehicle is an instance of a DriveBase object

in the API, and the adaptation decision on speed and lane is

executed by the drive() function of the instance (Algorithm 1,

line 10). The function receives the speed (mm/s) and rotation

angle (deg/s) as inputs. The driving lane is a specific concept in

our exemplar, so a lane change decision must be converted to

a rotation angle. Changing the lane can be realized by turning

clockwise or counterclockwise. A reusable code for following

and changing lanes can be found in our repository2.

4) Send: To achieve SoS goals, the state and adaptation

decisions of a vehicle should be known to a follower. The

vehicle uses the send() function of a mailbox shared with

the follower so that the follower can read the data. This

communication allows the vehicles to be integrated into an

SoS.

5) Data logging: Logging data is an important feature of

an experimental environment. The LEGO API3 provides a

simple logging function implemented in two lines of code

(Algorithm 1, lines 2 and 12). The data are saved as a CSV

file. A timestamp for each iteration of the adaptation loop can

also be extracted (Algorithm 1, lines 3 and 5).

V. EXPERIMENT

A. Sample scenario

To demonstrate the feasibility of the Platooning LEGOs as

a physical experimental environment for CPSoS engineering,

we conducted a sample experiment. The platooning vehicles

were programmed to achieve the adaptation goals described

in Table I. The implementation code can be found in our

repository2. To check whether our platoon implementation

is sufficiently adaptive to environmental uncertainties, we

introduced two events that could interfere with the goal

achievement while the platoon is driving. The first event was

an interruption by a moving obstacle, such as a non-platooning

vehicle on a highway. The second event was a blockage of a

lane due to a fixed obstacle, such as a traffic accident.

B. Experiment results

The experimental code and result data have been uploaded

to our repository2. The experimental results are visualized in

Figure 5. A video of the experiment has also been released4.

Figure 5 (a–d) shows the achievement of the platoon’s adap-

tation goals. Figure 5 (e–f) shows the adaptations of each

vehicle. The unexpected events (obstacles) are also shown. The

two hard goals (collision prevention and driving in a row) were

achieved in all scenarios. On the other hand, the achievement

of the two soft goals varied depending on the situation.

When moving obstacles interfered with the platoon’s driving

(moving obstacles 1 and 2 in Figure 5), road occupancy

increased and travel speed decreased. However, after the mov-

ing obstacles disappeared, the vehicles adapted their driving

speeds to reduce road occupancy and increase the platoon’s

travel speed. When stationary obstacles blocked a lane (fixed

obstacles 1 and 2 in Figure 5), the travel speed decreased. The

leader decided to change lanes, and the followers also changed

lanes to bypass the obstacles. The vehicles then adapted their

speed to maximize the platoon’s travel speed. The experiment

confirmed that the Platooning LEGOs can be used as a case

of industrial self-adaptive CPSoS and a physical experimental

environment for CPSoS engineering.

VI. CONCLUSION

Many CPSoS are required to adaptively achieve their goals

in uncertain environments. An industrial example of a CPSoS

is platooning technology for clustered autonomous driving

of independent vehicles. The vehicles adapt their driving

lanes and speeds to achieve the platoon’s adaptation goals.

To facilitate research into self-adaptive CPSoS engineering,

we presented an exemplar called Platooning LEGOs, which

is a model problem of platooning technology implemented

using LEGOs. We provided system descriptions, adaptation

goals, environmental uncertainties that can be addressed in this

exemplar, and physical and software implementation manuals

of the experimental environment. We conducted a sample

4Experiment demonstration video - https://youtu.be/tRSoTPq5EEI
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Fig. 5. Sample experiment results

experiment to validate the feasibility of the Platooning LE-
GOs and have made all experimental materials available. We

showed that our physical exemplar is conducive to experiment-

ing with adaptation approaches in real CPSoS. Moreover, it

is expandable and easy to implement with a limited budget

and without considerable mechanical knowledge. Platooning
LEGOs can be used by the SEAMS community as a common

physical experimental environment for self-adaptive CPSoS

engineering.
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decentralized control in self-adaptive systems,” in Software Engineering
for Self-Adaptive Systems II. Springer, 2013, pp. 76–107.
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