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Abstract—Cyber-physical systems (CPSs) observe operational
environments and continuously decide on actions to achieve goals.
In many cases, complex CPSs have several goals to satisfy simul-
taneously. To develop a CPS with multiple goals, engineers can
create various control systems, each contributing to a goal based
on a system-of-systems (SoS) engineering perspective. Engineers
then conduct field operational tests (FOTs) to collect data for
analyzing and optimizing the control systems. However, uncer-
tainties in the physical environment and the emergent behavior
of multiple controllers present several challenges in conducting
FOTs. We have hands-on experience in performing massive FOTs
of a multi-controller CPS to realize engineering challenges in
the FOTs. We modeled and developed an autonomous robot
vehicle consisting of a lane-keeping system and an adaptive
cruise control system. To analyze and optimize autonomous
driving, we conducted FOTs of 125 possible configurations of
the control systems, each 50 times. This paper presents 1)
the model, software, and hardware implementation manuals of
our case study on autonomous driving, 2) an FOT log dataset
obtained from about 100 hours of driving and its analysis results,
3) research challenges emerging in the multi-controller CPS
FOT learned from our hands-on experience, and 4) possible
applications of our dataset for future research.

Index Terms—Cyber-physical systems, Multi-controller,
System-of-systems, Autonomous vehicle, Field operational test
dataset

I. INTRODUCTION

Cyber-physical systems (CPSs) continuously adapt their
actions to satisfy goals in physical environments [1]. A CPS
has a feedback loop consisting of a controller that checks the
goal achievement and manipulates physical components based
on its decision-making strategy [2].

Developing a decision-making strategy is one of the primary
purposes of CPS development. When there are many goals
that a CPS is required to achieve simultaneously, it becomes
more challenging to develop an effective strategy. One popular
approach is to create dedicated controllers for each goal to
divide the concern [3]–[5]. It views complex CPSs through
the lens of system-of-systems (SoS) [6]–[8]. For example, both
a lane-keeping system and an adaptive cruise control system
operate together within an autonomous vehicle.

Engineers can conduct field operational tests (FOTs) [9] of
a CPS under development to evaluate to what extent the CPS
can achieve the given goals in the actual operational environ-
ment and optimize the configurations of the CPS controllers.

However, conducting the CPS FOT has several engineering
challenges. FOT results are stochastic because of uncertainty
in the physical environment (e.g., sensor noise). It requires
engineers to repeat many FOTs to obtain statistically signif-
icant results. In a multi-controller CPS, one controller may
affect the performance of another controller during an FOT.
A specific combination of controllers may trigger an emergent
behavior that developers may not expect. Additionally, in many
cases, the configuration space of the controllers under analysis
is extensive and continuous, making the optimization of the
controllers more exhaustive.

To realize these challenges, we have hands-on experience
in developing a multi-controller CPS and conducting FOTs in
the SoS perspective. We designed and modeled an autonomous
robot vehicle consisting of a lane-keeping system and adaptive
cruise control system. We then performed FOTs of 125 possi-
ble controller configurations each 50 times, and analyzed the
results. This paper provides all materials and datasets related
to this case study for future research and shares the lessons
learned from our hands-on experience.

In summary, this paper contributes to the research on multi-
controller CPS development by providing the following:

• A re-implementable case study of a multi-controller CPS,
including its model, software, and hardware implementa-
tion manuals,

• An autonomous driving FOT log dataset of 125 controller
configurations, each with 50 test results, obtained from
about 100 hours of driving,

• Lessons learned from hands-on experience exposing re-
search challenges emerging in the multi-controller CPS
FOT,

• Possible applications of the FOT log dataset for future
research.

The remainder of this paper is organized as follows: Sec-
tion II provides a background on the control theoretic system
design. Section III introduces our case study to develop a CPS,
and Section IV presents our data collection method. Section V
analyzes the collected FOT dataset. Section VI discusses the
engineering challenges revealed in our experience. Section VII
introduces some possible applications of our FOT log dataset.
Section VIII addresses threats to validity, and Section IX
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Fig. 1: A feedback loop from the control perspective [2]

Fig. 2: An autonomous robot vehicle case study design

reviews the related work. Finally, Section X presents the
conclusions and opportunities for future studies.

II. BACKGROUND: CONTROL-THEORETIC FEEDBACK
LOOP

Many CPSs have feedback loops that observe the uncertain
and changing environments and make adaptive actions [10].
A popular approach to modeling the feedback loop is based
on control theory [4], [11], [12]. Fig. 1 shows the feedback
loop from a control perspective [2], [13]. The feedback loop
consists of a controller and a plant. Control values generated
by the controller manipulate the plant, and the plant’s behavior
depends on the control values. The behavior of the plant is
measurable for the system goals. Using the measured behavior
of the plant, the controller calculates the error associated with
each goal and determines the control values of the plant to
minimize the error. In addition to the control values, factors
that affect the plant’s behavior but are not under the direct
control of the system are called disturbances or, sometimes,
uncertainties in software engineering. The disturbances can
make the behavior of the plant different from what the con-
troller intended, so the controller should mitigate the effect of
the disturbances. Many studies expect that the deep foundation
of control theory will boost feedback loop design [14]–[17].
Therefore, this study also models and develops a multi-
controller CPS using feedback loops based on this control
perspective.

III. AUTONOMOUS ROBOT VEHICLE DEVELOPMENT

This section introduces the design of our case study to
develop and analyze a multi-controller CPS. We developed
an autonomous vehicle to provide a representative example
of a multi-controller CPS. We utilized an open physical ex-
periment environment Platooning LEGOs [18] that provides a

Fig. 3: Autonomous vehicle controllers

programmable LEGO robot vehicle and an experimental track
design1. Leveraging the physical experiment environment, we
implemented our case study in Fig. 2. We developed an
autonomous vehicle equipped with a lane-keeping system and
an adaptive cruise control system. The vehicle observes its
operational environment using a color sensor facing down (i.e.,
lane) and a distance sensor facing the front. The color sensor
gives the light intensity value of the lane under the sensor. The
value provides information about the vehicle’s relative position
from the lane center (i.e., the border between the white and
black areas). In addition, there is an external vehicle in front
of the autonomous vehicle, so the distance sensor gives the
distance between the two vehicles. We assume that the external
vehicle drives at a constant speed in this case study.

The autonomous vehicle has two explicit control systems
and goals, as shown in Fig. 3. The control systems are modeled
as decoupled feedback loops from the control perspective, and
they operate together to achieve the two goals simultaneously.
The first goal is to drive as smooth as possible following the
center of the lane. The value of the lane center recognized
by the color sensor accurately specifies this goal. The lane-
keeping system observes the lane color of the current position.
It calculates the error between the observed color value and
the goal, and a steering controller decides the steering angle
to keep the vehicle at the lane center. The second goal is to
maintain the distance between the autonomous and the external
vehicles to a set distance configured by the user. The adaptive
cruise control system observes the distance and calculates the
error from the goal. The speed controller sets the speed to
minimize the error. Therefore, the steering angle and speed
pair specify the vehicle’s instant driving state.

We implemented the controllers as PID controllers [19]. A
PID controller gets an observation value o(t) (e.g., color or
distance) from a sensor and calculates the error e(t) for a goal.
It returns a control value y(t) (e.g., steering angle or speed)
from the error e(t) as follows: y(t) = Kpe(t)+Ki

∫ t

0
e(τ)dτ+

Kd
de(t)

dt . In discrete system whose t = 0, 1, 2, . . . , y(t) =

Kpe(t) + Ki

∑t
τ=0 e(τ) + Kd∆e(t), where ∆e(t) = e(t) −

e(t−1). The three non-negative coefficients Kp, Ki, and Kd,
each determines the degree of activation of different control
mechanisms [19], configure a PID controller. We implemented

1Hardware implementation manuals of the robot vehicle and the FOT
environment: https://github.com/KAIST-SE-Lab/Platooning-LEGOs
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Fig. 4: Autonomous vehicle FOT configuration space

the discrete PID controllers of the lane-keeping system and
the adaptive cruise control system in Python embedded in the
robot vehicle. The software iteratively calculates the steering
angle and speed every 50 ms. It records o(t), e(t),

∑t
τ=0 e(τ),

∆e(t), and y(t) of both the steering and speed controllers. We
released the controller software used in this case study.2

IV. VEHICLE FIELD OPERATIONAL TESTS

To analyze autonomous driving, we conducted FOTs of the
vehicle with numerous possible steering and speed controller
configurations. We ran the vehicle FOT with varying indepen-
dent variables that affect autonomous driving performance, as
shown in Fig. 4. The configuration of the coefficients of the
steering and speed PID controllers primarily affects driving
performance. However, to limit the orthogonal configuration
axes, we fix the Ki and Kd but only vary Kp of the controllers
(x- and y-axes). In addition to the controller configurations, the
environment is another factor that affects CPS goal achieve-
ment but is not under the direct control of the CPS. An external
vehicle is a dynamic environment of an autonomous vehicle.
Therefore, we also varied the constant speed of the external
vehicle (z-axis) during FOTs. Based on a pre-experiment, we
set our case study’s configuration range and fixed coefficients,
as shown in Fig. 4. Note that the configuration axes are
continuous, so it is impossible to experiment with all possible
configurations. We discretize the configuration range to five for
each axis, so there are 125 (= 5×5×5) possible configurations
of the autonomous vehicle FOT.

Fig. 5 shows the implemented robot vehicles and the FOT
environment. The color goal was 33%, which is the value
obtained when sensing the center of the lane in our exper-
imental setting, and the safe distance goal between the two
vehicles was 200 mm, which is longer than the length of a
robot vehicle. The length of the lane is 3 m, and the distance
between the tails of the two vehicles at the start of driving is
1 m. The two vehicles start driving simultaneously, and the
experiment ends when the front vehicle arrives at the end of
the lane. We keep the rest of the elements as consistent as
possible, except for the independent variables under analysis

2Controller software and FOT log data collected from this case study:
https://github.com/est-cho/AV-FOT

Fig. 5: Implemented robot vehicles and the FOT environment

(i.e., FOT configurations). However, since uncertainties may
exist in the physical environment (e.g., sensor noise or non-
uniform friction of the lane), we repeated the FOTs of all
possible configurations in Fig. 4 50 times to obtain statisti-
cally significant results. The FOT dataset is available in our
repository.2

V. FIELD OPERATIONAL TEST DATA ANALYSIS

We conducted 50 FOTs for each configuration, taking about
100 hours, and collected 6,250 (= 125 × 50) FOT logs. The
volume of the dataset was about 80 MB. The raw data were
released on our repository2. By analyzing the FOT logs col-
lected by varying independent variables (i.e., configurations),
engineers can understand the controllers of the CPS. This
section describes the collected FOT logs by analyzing them
from three viewpoints.

Viewpoint 1: Analyzing a single FOT result: The driving
trace of an FOT is the time-series data of the variables
described in Section III. Engineers may evaluate a vehicle’s
driving performance with a specific configuration by analyzing
the time-series data. Fig. 6 visualizes two arbitrary FOT logs.
It only visualizes the color and distance observation values,
steering angle, and speed control values.

Since the FOT ended when the front vehicle arrived at the
end of the lane, the lengths of the FOTs in Fig. 6 (a) and
(b) differ depending on the external vehicle speed z. We also
observed that the vehicle controllers continuously adapt the
steering angle and speed during driving. Consequently, the
observed values of lane color and front distance changed. In
the log, we observed that the vehicle moves left and right
to keep itself on the lane center as much as possible. In
addition, after the autonomous vehicle caught up with the
external vehicle, it drove while maintaining a safe distance
from the external vehicle. We can observe that the change in
configuration results in different shapes of time-series data. In
addition, engineers can quantify the driving characteristics of
a specific configuration, such as the time to catch up with the
front vehicle and the amplitude of the fluctuation of the lane
color [20].

Viewpoint 2: Analyzing the FOT results of a configu-
ration: There are many FOT logs of the same configuration,
so engineers can statistically evaluate the goal achievement
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(a) Config. (x=0.4, y=0.6, z=140) (b) Config. (x=0.8, y=1.2, z=220)

Fig. 6: Autonomous vehicle driving trace visualization

Fig. 7: Distribution of achievement of two autonomous driving
goals obtained through repetitive FOTs

of the configuration. Fig. 7 shows the distribution of the two
autonomous driving goal achievements (i.e., lane-keeping and
adaptive cruise control) of three arbitrary configurations in
terms of the mean squared error (MSE) of lane color and
distance time-series data from the goals. A small lane-keeping
MSE means driving close to the center of the lane, and a
small adaptive cruise control MSE means catching up with
the external vehicle quickly.

In Fig. 7, we can see that the FOT results were not always
the same, even though engineers tested the same configuration.
We tried to control other variables as much as possible, except
configuration. However, uncertainties (e.g., sensor noise, the
direction in which the vehicle was placed manually, or the re-
maining battery) still affected goal achievement. By analyzing
this distribution, engineers could evaluate the consistency of
many FOTs of the same configuration, thereby quantifying the
degree of the uncertainties that affect the controllers. For ex-

ample, configuration (0.8, 1.8, 140) appears to be less affected
by such uncertainties than the other configurations shown in
Fig. 7. In particular, we can see that the goal achievements
are further dispersed by simply increasing the external vehicle
speed while remaining in the other configurations. It shows
that the degree of uncertainty of the FOT varies depending
on not only the CPS’s internal configurations but also the
environmental configurations.

Viewpoint 3: Analyzing the FOT results of many config-
urations: Engineers can also explore changes in goal achieve-
ment by varying configurations to optimize the controllers of
the autonomous vehicle. This allows engineers to understand
how each configuration axis affects CPS’s goal achievement.
Fig. 8 shows how the goal achievements of the lane-keeping
system and the adaptive cruise control system change with
steering and speed controller configurations, respectively. Con-
figuration axes that were not analyzed were arbitrarily fixed for
visualization. Although many FOTs were not deterministic, we
could statistically compare different configurations. In Fig. 8
(a), the steering controller whose Kp (x) was 0.6 performed
the best on average when y was 1.5 and z was 200. In Fig. 8
(b), the adaptive cruise control system achieved its goal better
as it increased the Kp of the speed controller (y) when x was
0.6 and z was 180.

Fig. 9 analyzes the errors of the two autonomous driving
goals by simultaneously changing the two configuration axes.
Subgraphs (a) and (b) show the MSEs for lane-keeping and
adaptive cruise control, respectively. Additionally, the sub-
graphs also show when the speed of the external vehicle, which
is an environmental factor, is 140, 180, and 220. A point in a
3D graph is the MSE average of 50 FOTs.

In Fig. 9 (a), as both x and y increase, the lane-keeping
MSE generally increases. This means that the larger the
Kps of the steering and speed controllers are, the more the
vehicle shakes left and right on the lane. Although y was a
configuration variable of the adaptive cruise control system, it
also affected the performance of the lane-keeping system. In
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(a) Lane-keeping goal achievement (y=1.5, z=200)

(b) Adaptive cruise control goal achievement (x=0.6, z=180)

Fig. 8: Changes in the achievement of autonomous driving
goals affected by configurations (one independent variable)

addition, shaking increased as the speed of the external vehicle
increased. As shown in Fig. 9 (b), the adaptive cruise control
MSE was primarily affected by the y configuration axis. The
larger the y, the smaller the MSE. This finding shows that
the autonomous vehicle could catch up to the external vehicle
quickly and maintain the distance because the Kp of the speed
controller was large. In addition, the faster the external vehicle,
the harder it is to maintain the safe distance.

Based on this viewpoint, engineers can understand the trade-
off between the goals of the autonomous vehicle and the goal
achievements of each configuration. Finally, the controllers can
be optimized based on this analysis and knowledge.

Engineers can analyze CPS’s behavior and the controller
configurations’ impact on CPS goals with these various view-
points. Through the analysis, the engineers obtain knowledge
to understand CPS controllers. In addition, based on statistical
analysis, many FOT results can provide statistically significant

information to engineers.

VI. LESSONS LEARNED

Although we brought the automotive domain to develop a
multi-controller CPS and conduct FOTs, our experience in this
paper revealed many domain-general engineering challenges.
This section discusses the challenges for future research.

Expensive cost of FOTs: Running CPSs in actual opera-
tional environments is a time-consuming and exhausting task.
Even though our robot vehicle was a simplified version of real
vehicles, it took much time and effort to perform sufficient
FOTs for multiple configurations of the vehicle controllers.
The FOT cost of a CPS is proportional to the number of FOT
configurations under test and the number of iterations required
for statistical analysis. In addition, the FOT is sometimes
dangerous. We also experienced accidents such as robots
falling out of the track or external factors obstructing driving
due to the tester’s mistake. Although we can replace the FOT
with high-fidelity simulation, the simulation relies on limited
expert domain knowledge. In particular, we cannot omit FOTs
of safety-critical CPSs, so methodologies for efficient and safe
FOT are needed.

Uncertainties in multi-controller CPS FOTs: Engineers
encounter two significant uncertainties in the FOTs of multi-
controller CPSs. One is so-called environmental uncertainty in
the physical environment [21]. The physical world itself is not
stationary (e.g., changing weather, non-uniform friction of the
road). The interaction between the CPS and the environment
could be incorrect (e.g., sensor/actuator noise and failure). This
degrades the reliability of a single FOT result and requires
many FOTs for statistically significant results.

Another is uncertainty due to the unknown interdependence
between different goals. CPS goals can influence each other
in ways that engineers may not expect. A control decision for
a specific goal may unintentionally contribute to or interfere
with other goals. In our case study, when the adaptive cruise
control system accelerates the vehicle to reduce the distance
to the external vehicle, the error of the lane-keeping system
increases. This makes it difficult to independently evaluate or
optimize a particular controller through FOTs.

Difficulties of FOT log data analysis: Analysis of the
FOT logs of the multi-controller CPSs has several challenges.
Time-series data, which records CPS’s operation frequently
(e.g., every 50 ms in our vehicle), are substantial, so the
technique should handle big data. Many features are also
recorded in the FOT logs, so it is sometimes hard to find
primary features related to a particular property of the CPS.
In addition, because of the uncertainties of FOTs, the analysis
results also vary depending on the given FOT logs. It also
limits the reliability of the results to a certain confidence
level. Finally, no matter how sufficient FOT data is collected,
we should not misunderstand that all CPS behavior can be
recorded in the data. The FOT log data only capture the
observable features within the sensing capability of the CPS,
so data analysis only provides partial information about CPS.
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(a) Lane-keeping goal achievement

(b) Adaptive cruise control goal achievement

Fig. 9: Changes in the achievement of autonomous driving goals affected by configurations (two independent variables)

Therefore, information obtained by human inspectors is still
meaningful and should not be overlooked.

VII. POSSIBLE APPLICATIONS OF OUR FOT DATASET

We released the FOT logs collected from our case study2

for future research on engineering for multi-controller CPS
development and FOT engineering. This section introduces
some possible applications of the FOT dataset.

Data-driven modeling of the CPS-environment inter-
action: Due to the interaction of the CPS and the environ-
ment, both CPS states and environmental states change over
time. Accurate modeling of the interaction and its effect is
the first step for an accurate CPS simulation to reduce the
FOT cost [22], [23]. We can automatically extract valuable
interaction models from our FOT log dataset [24], [25]. The
FOT log shows sequential transitions of the CPS’s internal data
used for decision-making (e.g., speed and angle control values)
and the environmental data observed by sensors (e.g., distance
and color sensor values) every 50 ms. In addition, our dataset
contains many FOT results of different CPS configurations,
so it could also reveal the effect of the configurations on the
interaction.

Quantifying uncertainties of multi-controller CPS:
The uncertainties mentioned earlier stemming from CPS op-
eration in a physical environment and multiple controllers’
interdependence (emergent behavior) may cause the CPS to

behave contrary to the engineers’ expectations. To mitigate
the uncertainties, the execution data of CPS may be analyzed
further by quantifying uncertainties or extracting causes of
variations in goal achievement within a configuration [26],
[27]. To quantify uncertainty, enough sample data are needed
to obtain statistically significant results from the analysis. Our
FOT dataset presents 50 test results per 125 configurations,
which provides expansive configuration space and ample test
data.

CPS optimization based on data analysis: Although
the CPS is expected to achieve its goals reliably, we have
experienced that goal achievement significantly varies by the
configurations of the internal controllers and the external en-
vironment. Unfortunately, engineers cannot accurately predict
CPS behavior in the real world before runtime. Therefore,
the runtime data can optimize the CPS for the operational
environment [28], and related studies can use our dataset
for this purpose. In particular, machine learning techniques
for optimizing CPS configurations may use our dataset for
training [29]. Real-time CPS monitoring and adaptation can
also use our dataset by streaming the FOT logs [30], [31]. In
addition, the FOT logs are actual multivariate time-series data,
so there could be many possible applications [32].

Design of domain-specific FOT methodologies: Not
limited to the specific applications described above, our dataset
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and hands-on experience in this paper can guide a domain-
specific FOT methodology design [9]. In this paper, we
focused on a scenario of repeating many FOTs over the
configuration space of a multi-controller CPS. Although this
scenario does not represent all situations, we believe that
practitioners can design their own FOT methods based on the
data and experiences described here.

VIII. THREATS TO VALIDITY

The simplification of the autonomous vehicle as a robot
threatens our case study. We tried to express the essen-
tial elements engineers would face in multi-controller CPS
development as realistically as possible within a simplified
experimental environment [18]. We developed two control
systems (lane-keeping and adaptive cruise control systems)
commonly installed in real cars. Our case study also includes
an external vehicle that greatly influences safe driving in the
real world. In addition, the format of the FOT log is the same
as that of the actual digital tachograph [20]. Another threat
is that the experimenters could bias the data we collected and
disclosed. To reduce this threat, the authors repeated the FOTs
individually for all possible configurations and aggregated the
collected data.

IX. RELATED WORK

As the complexity of the CPS increases, many CPSs are de-
signed and developed as collections of multiple subsystems us-
ing SoS approaches. For example, an autonomous vehicle [33],
[34], a smart factory [35], [36], and an industry robot [37],
[38] are controlled by individual control systems or planners.
However, it is hard to reproduce the case studies of the multi-
controller CPS because of the sophisticated domain-specific
knowledge required. This paper provides a re-implementable
physical case study for the research community on the CPS
from the SoS perspective. The implementation manuals of
the physical part1 and its software and the dataset2 of our
robot vehicle abstracting the actual car are available for future
research. Researchers who do not have a multi-controller CPS
experimental environment can consider using this case study
and dataset.

This paper provides a real dataset obtained from a sim-
plified robot vehicle. Many autonomous driving companies
and research institutes have released datasets of their actual
autonomous cars under development [39]–[42]. However, their
datasets focus primarily on environmental sensor data, such as
the camera, lidar, and radar data, for understanding the traffic
situations an autonomous vehicle may encounter. They were
released to build vast amounts of machine learning training
data. Few datasets released vehicle bus data, such as steering
angle and velocity [43], [44]. However, our dataset represents
all sensor data, the internal data used for decision-making,
and the actuator control data to show all of our hands-on
experiences as much as possible.

X. CONCLUSION

We designed a case study to develop a multi-controller CPS
and performed its FOTs. We implemented an autonomous

robot vehicle equipped with a lane-keeping system and an
adaptive cruise control system. Implementation manuals for
the model, software, and hardware of the vehicle were pro-
vided. To analyze the various configurations of the two control
systems, we discretized the continuous configuration space
into 125 possible configurations and conducted 50 FOTs
for each configuration. The collected FOT log dataset was
analyzed and released. Based on our hands-on experience, we
discussed the challenges of the multi-controller CPS FOTs
and introduced how researchers can utilize our dataset for
future research. In future studies, we also plan to provide an
automated method to evaluate and optimize multi-controller
CPS based on its FOT logs.

ACKNOWLEDGEMENT

This research was supported by the MSIT(Ministry of
Science and ICT), Korea, under the ITRC(Information Tech-
nology Research Center) support program(IITP-2022-2020-
0-01795) and (No. 2015-0-00250, (SW Star Lab) Software
R&D for Model-based Analysis and Verification of Higher-
order Large Complex System) supervised by the IITP(Institute
of Information & Communications Technology Planning &
Evaluation).

REFERENCES

[1] R. Baheti and H. Gill, “Cyber-physical systems,” The impact of control
technology, vol. 12, no. 1, pp. 161–166, 2011.

[2] A. Filieri, M. Maggio, K. Angelopoulos, N. d’Ippolito, I. Gerostathopou-
los, A. B. Hempel, H. Hoffmann, P. Jamshidi, E. Kalyvianaki, C. Klein
et al., “Software engineering meets control theory,” in 2015 IEEE/ACM
10th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems. IEEE, 2015, pp. 71–82.

[3] S. Shevtsov, D. Weyns, and M. Maggio, “Simca* a control-theoretic
approach to handle uncertainty in self-adaptive systems with guaran-
tees,” ACM Transactions on Autonomous and Adaptive Systems (TAAS),
vol. 13, no. 4, pp. 1–34, 2019.

[4] R. D. Caldas, A. Rodrigues, E. B. Gil, G. N. Rodrigues, T. Vogel, and
P. Pelliccione, “A hybrid approach combining control theory and ai for
engineering self-adaptive systems,” in Proceedings of the IEEE/ACM
15th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, 2020, pp. 9–19.

[5] M. Lee, K. Lee, C. Kim, and J. Lee, “Analytical design of multiloop pid
controllers for desired closed-loop responses,” AIChE Journal, vol. 50,
no. 7, pp. 1631–1635, 2004.

[6] C. Guariniello, A. K. Raz, Z. Fang, and D. DeLaurentis, “System-of-
systems tools and techniques for the analysis of cyber-physical systems,”
Systems Engineering, vol. 23, no. 4, pp. 480–491, 2020.

[7] M. J. de C Henshaw, “Systems of systems, cyber-physical systems, the
internet-of-things. . . whatever next?” Insight, vol. 19, no. 3, pp. 51–54,
2016.

[8] L. Zhang, “Applying system of systems engineering approach to build
complex cyber physical systems,” in Progress in Systems Engineering.
Springer, 2015, pp. 621–628.

[9] Y. Barnard and O. Carsten, “Field operational tests: challenges and meth-
ods,” in Proceedings of European Conference on Human Centred Design
for Intelligent Transport Systems, Eds edn. HUMANIST publications,
Lyon, 2010, pp. 323–332.

[10] R. Alur, Principles of cyber-physical systems. MIT press, 2015.
[11] T. Patikirikorala, A. Colman, J. Han, and L. Wang, “A systematic survey

on the design of self-adaptive software systems using control engineering
approaches,” in 2012 7th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems (SEAMS). IEEE,
2012, pp. 33–42.

[12] S. Shevtsov and D. Weyns, “Keep it simplex: Satisfying multiple goals
with guarantees in control-based self-adaptive systems,” in Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, 2016, pp. 229–241.

211

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 13,2022 at 13:26:26 UTC from IEEE Xplore.  Restrictions apply. 



[13] R. De Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu,
B. Schmerl, G. Tamura, N. M. Villegas, T. Vogel et al., “Software
engineering for self-adaptive systems: A second research roadmap,” in
Software Engineering for Self-Adaptive Systems II. Springer, 2013, pp.
1–32.

[14] A. Filieri, M. Maggio, K. Angelopoulos, N. D’ippolito,
I. Gerostathopoulos, A. B. Hempel, H. Hoffmann, P. Jamshidi,
E. Kalyvianaki, C. Klein et al., “Control strategies for self-adaptive
software systems,” ACM Transactions on Autonomous and Adaptive
Systems (TAAS), vol. 11, no. 4, pp. 1–31, 2017.

[15] R. De Lemos, D. Garlan, C. Ghezzi, H. Giese, J. Andersson, M. Litoiu,
B. Schmerl, D. Weyns, L. Baresi, N. Bencomo et al., “Software engi-
neering for self-adaptive systems: Research challenges in the provision
of assurances,” in Software Engineering for Self-Adaptive Systems III.
Assurances. Springer, 2017, pp. 3–30.

[16] M. Litoiu, M. Shaw, G. Tamura, N. M. Villegas, H. A. Müller, H. Giese,
R. Rouvoy, and E. Rutten, “What can control theory teach us about
assurances in self-adaptive software systems?” in Software Engineering
for Self-Adaptive Systems III. Assurances. Springer, 2017, pp. 90–134.
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