

사이버 물리 시스템 오브 시스템즈의 행동 기술 자동화 기법

Esther Cho O, 김한수, 신용준, 배두환

KAIST 전산학부

{esthercho, hansukim, yjshin, bae}@se.kaist.ac.kr

Automatically Generating Behavior Descriptions of a Cyber-Physical System-of-Systems

Esther Cho O, Hansu Kim, Yong-Jun Shin, Doo-Hwan Bae

School of Computing, KAIST

Abstract

Cyber-Physical System-of-Systems (CPSoS) is a set of Cyber-Physical Systems (CPSs) that interact with each other and operate

in a physical environment. When developing or prototyping such complex systems, engineers make various decisions based on not

only the facts in the system and environment but also their assumptions in uncertain cases of the system operation. However, these

assumptions may be inaccurate resulting in a gap between expectations and reality, which may result in unintended behavior or

failure of the system. To address these issues and to realize realistic knowledge, analyzing uncertainties of CPSoS from field

execution is critical in iterative development processes. Therefore, in this study, we propose a search-based method to automatically

generate behavior descriptions of CPSoS in the form of a causal relationship of two propositions obtained from field experiment

data. In a case study, we applied the proposed method and evaluated the generated behavior descriptions to reveal that they provide

useful insights into the target CPSoS for the next cycle of development.

1. Introduction

Cyber-Physical System-of-Systems (CPSoS) is a distributed yet

interconnected system of Cyber-Physical Systems (CPSs) interacting

with each other while operating in a physical environment [1]. During

development, engineers make various decisions based on the

assumptions of the system behaviors and the surrounding physical

environment [2] that has innate uncertainties [3]. Consequently,

engineered CPSoS may not operate as anticipated, resulting in a

discrepancy between the assumptions and what transpires in the real

world.

This encounter of uncharted situations not only ensues a gap

between the assumption and reality, but also can result in unintended

behavior or failure of the system. To minimize this gap and obtain

realistic knowledge, analyzing uncertainties of CPSoS from field

execution is critical in iterative development processes. Consequently,

engineers may generate descriptions to capture their knowledge of

CPSoS behaviors and its environment for the next iteration in the

engineering process. However, engineers' incomplete understanding

of the system may bias the descriptions and inaccurately capture the

CPSoS behaviors. In addition, engineers cannot generate behavior

descriptions of unknown characteristics.

Therefore, in this paper, we applied a search method to

automatically find CPSoS behavior descriptions. The descriptions are

in the form of a causal relationship of propositions obtained from the

field experiment data, which reflects the real behaviors of the CPSoS.

Accordingly, found descriptions indicate what actually occurs in the

system operation and the surrounding context, which may help

engineers to have a better understanding of the system behaviors.

Through a case study on a real CPSoS, the proposed search method

was evaluated. The generated behavior descriptions revealed useful

insights, such as the interactions between the constituent CPSs and

the relationships between different actuator variables.

2. Background

Genetic Algorithm (GA) is a type of search method that mixes and

mutates solution representations (i.e., chromosomes) and applies

evolutionary pressure to drive the search for an optimal solution. GA

is used to solve complex problems that may be too intricate or

impossible to solve using a rule-based solver. Because GA searches

from a large search space, proper 1) representation of the

chromosomes, 2) designs of genetic operators, and 3) construction of

fitness function are crucial to find optimal solutions to a given

problem. In this paper, GA is applied to generate behavior

descriptions of a CPSoS solely based on the field experiment data.

3. Approach

The overall process for generating CPSoS behavior descriptions is

demonstrated in Figure 1, which utilizes GA. After engineers develop

a CPSoS, they can execute the system to obtain the field experiment

data. The data is a time-series data of the observable variables (e.g.,

sensing and actuating variables) recorded by each CPSs in the CPSoS.

First, the field experiment data is used to generate initial population

according to the chromosome representation and to evaluate

population by the fitness function. Then, genetic operators are

applied to the selected parent population to evolve and generate

offspring. The detailed representations of the chromosomes, design

of genetic operators, and construction of the fitness function are

described in the following sections.

3.1 Chromosome Representation

To generate and evolve CPSoS behavior descriptions, we first

represent a behavior description as a causal relationship between two

 This research was supported by the MSIT(Ministry of Science and ICT),

Korea, under the ITRC(Information Technology Research Center) support

program(IITP-2022-2020-0-01795) and (No. 2015-0-00250, (SW Star

Lab) Software R&D for Model-based Analysis and Verification of Higher-

order Large Complex System) supervised by the IITP(Institute of

Information & Communications Technology Planning & Evaluation).

2022년 한국컴퓨터종합학술대회 논문집

267

propositions. The cause-and-effect relationship of the propositions

demonstrates the flow of time in the CPSoS operation. A proposition

contains two variables from the field experiment data and an operator.

The operator captures the relationship between the variables and can

be represented as < , ≤ , > , ≥ , == , and ≠ . A behavior description

structure is visualized in Figure 2. The search space of a description

is limited to the number of variables and the time span of each

variable from the field experiment data.

3.2 Genetic Operators

To evolve the chromosomes (i.e., behavior description), we design

the genetic operators using the chromosome representation defined

above. Since a behavior description is composed of propositions,

which can further be decomposed into a relationship of variables, the

genetic operators are also designed to reflect this hierarchy. Behavior

crossover swaps the propositions in two parent descriptions to

generate two offspring, as shown in Figure 3. On the other hand,

variable-operator crossover exchanges the lower-level elements of

the descriptions, such as variables and operators. The variable-

operator crossover is illustrated in Figure 4.

The mutation operators are also designed to address the hierarchy

of the behavior description. The behavior mutation either randomly

generates an entirely new proposition or swaps the two propositions

in a behavior description to create a new offspring (Figure 5).

Similarly, variable-operator mutation either randomly generates an

entirely new variable or operator in a proposition or swaps variables

or operators in a behavior description (Figure 6).

3.3 Fitness Function

A fitness function is used to guide the search in GA. The

constructed fitness function in Equation 1 evaluates the generated

behavior descriptions.

𝑠𝑐𝑜𝑟𝑒 =
𝑡𝑝

𝑡𝑝 + 𝑡𝑛
∗ 𝑃𝑒𝑛𝑡𝑖𝑚𝑒 ∗ 𝑃𝑒𝑛𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 ∗ 𝑃𝑒𝑛𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 (1)

tp, or true-positive, counts the number of cases a behavior description

is satisfied in the field data. On the other hand, tn, or true-negative,

counts the number of cases that a behavior description is not satisfied.

Therefore,
𝑡𝑝

𝑡𝑝+𝑡𝑛
 quantifies the ratio that the given behavior

description is really observed in the field experiment.

In addition to the occurrence ratio of the behavior descriptions, the

given behavior description was further assessed by introducing time,

cohesion, and coupling penalties to guide the search. The three

penalty values are between 0 and 1, and thus reduces the overall score

even when only one penalty criterion is met.

Time penalty, 𝑃𝑒𝑛𝑡𝑖𝑚𝑒 , is intended to penalize behavior

descriptions with large time gaps. Although a behavior description

may be revealed with significant time lag, stating a causal

relationship may be impetuous. Consequently, we assign a time

penalty to descriptions when the maximum time difference between

variables is greater than a certain time threshold. Cohesion penalty,

𝑃𝑒𝑛𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 , assesses the relatedness of the variables in a proposition.

Propositions containing different variable types are penalized. To

retain the diversity of the behavior descriptions, we incrementally

increase the cohesion penalty after each iteration of the search. In

addition, coupling penalty, 𝑃𝑒𝑛𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 , evaluates the

interdependence among the propositions in a behavior description.

Coupling penalty is applied to penalize behavior descriptions with

the same system or variable types in two propositions.

4. Evaluation

A case study was performed to evaluate the proposed method on

Platooning LEGOs [4], which is an open CPSoS experimental

Figure 1: GA Process for Generating Behavior Descriptions

Figure 2: Representation of a Behavior Description

Figure 3: Behavior Crossover

Figure 4: Variable-Operator Crossover

Figure 5: Behavior Mutation

Figure 6: Variable-Operator Mutation

2022년 한국컴퓨터종합학술대회 논문집

268

environment using robot vehicles. The two vehicles each have a role,

a leader (Veh 1) and a follower (Veh 2), respectively, and drive on a

square track with rounded corners. The implementation of the

proposed method can be found in our repository 1 . Experiment

settings are shown in Table 1. The generated behavior descriptions

are shown in Table 2, which were further scrutinized with respect to

the domain knowledge.

Table 1: Experiment Setting

 Parameter Value

Search

Initial Population Size 200

Population Size 100

Crossover Rate 0.6

Mutation Rate 0.2

Budget 100

Fitness

Function

Max Time Difference 30

Time Penalty 0.1

Coupling Penalty 0.9

Cohesion Penalty Step Size 0.01

Table 2: Generated Behavior Descriptions

 If Then Score

1 Veh 1 integral at t+0 ≤

Veh 1 integral at t+5

Veh 2 integral at t+5 ≤

Veh 2 integral at t+6

88.89

2 Veh 1 distance at t+0 ≤

Veh 1 distance at t+4

Veh 1 integral at t+5 ≤

Veh 1 integral at t+6

92.20

3 Veh 2 speed at t+0 ≤

Veh 2 speed at t+20

Veh 2 integral at t+20 ≤

Veh 2 integral at t+21

90.51

The first description is a relationship between integral values of

two vehicles. The integral value is a system variable used in the

proportional–integral–derivative controller for the adjustment of the

steering angle of the vehicle. In our scenario, the integral value

increases when the vehicle passes through the corners of the track.

The generated behavior description discloses that the follower

vehicle enters the corner section at least five ticks after the leader

vehicle enters the corner. Thus, this description reveals the

relationship between the two CPSs.

The second description is a relationship between distance and

integral of the leader vehicle. Since our track was placed parallel to a

wall, the distance readings can be reduced when the leader vehicle is

approaching the wall. This description shows that after the leader

vehicle senses the wall, it begins to turn the corner of the track. Thus,

this statement provides insight into our experimental environment

that was overlooked.

The third description is a relationship between speed and integral

of the follower vehicle. Since the vehicles operated on a squared

shape track, the follower vehicle consistently increased its speed at

the straight section of the track, while decreasing speed at the corner

section. Thus, this statement reflects the characteristic of the system

through the relationships of the variable types where the integral

value of the vehicle is increased after increase in speed.

In our case study, we applied the proposed approach and found

behavior descriptions that provide new and overlooked insights into

the CPSoS behaviors and experimental environment. The frequency

of the observed behaviors can be described with the score defined in

this method. Because the descriptions were generated solely based on

the field data, these descriptions appropriately reveal the real

behaviors of CPSoS, thus providing knowledge in our system.

1 https://github.com/est-cho/Belief-Finder

5. Related Work

There are various studies that analyze field experiment data logs of

CPS to provide information on the goal-hindering factors, such as

anomalies. Krismayer et al. proposed a method for run-time

monitoring of the CPS behavior from the CPS event logs to generate

system constraints [5]. Liu et al. introduced a path planner that

automatically adapts for an autonomous vehicle to avoid collisions

based on test logs [6]. Schmidt et al. proposed a method to

automatically detect anomalies in CPS behaviors from execution log

[7]. These studies focus on analyzing data logs to find incorrect

operations of a CPS. On the other hand, our proposed method is

centralized on generating behavior descriptions that can describe

both correct and incorrect operations.

6. Conclusion

Engineers have preconceived assumptions of a CPSoS behaviors

and physical environment in an iterative development process.

However, manually capturing these behavior descriptions poses

challenges, such as biasing the descriptions and infeasibility to elicit

unknown behaviors. To address these challenges, we proposed a

search-based method to automatically generate realistic behavior

descriptions of a CPSoS from a field experiment data. A case study

was conducted on a real CPSoS to show the applicability of the

proposed method. The generated descriptions revealed behavior

relationships of the system and the environment, which may be used

to develop metamorphic relations of a CPSoS for testing.

Reference

[1] S. Engell, R. Paulen, M. A. Reniers, C. Sonntag, and H.

Thompson, “Core research and innovation areas in cyber-

physical systems of systems,” in International Workshop on

Design, Modeling, and Evaluation of Cyber Physical Systems,

pp. 40–55, Springer, 2015.

[2] S. Hassan, N. Bencomo, and R. Bahsoon, “Minimizing nasty

surprises with better informed decision-making in self-

adaptive systems,” in 2015 IEEE/ACM 10th International

Symposium on Software Engineering for Adaptive and Self-

Managing Systems, pp. 134–145, 2015.

[3] Y. -J. Shin, J. -Y. Bae and D. -H. Bae, "Concepts and Models of

Environment of Self-Adaptive Systems: A Systematic

Literature Review," 2021 28th Asia-Pacific Software

Engineering Conference (APSEC), 2021, pp. 296-305.

[4] Y.-J. Shin, L. Liu, S. Hyun, and D.-H. Bae, “Platooning

LEGOs: An open physical exemplar for engineering self-

adaptive cyber-physical systems-of-systems,” in 2021

International Symposium on Software Engineering for

Adaptive and Self- Managing Systems (SEAMS), pp. 231–237,

2021.

[5] T. Krismayer, R. Rabiser, and P. Gru ̈nbacher, “A constraint

mining approach to support monitoring cyber-physical sys-

tems,” in International Conference on Advanced Information

Systems Engineering, pp. 659–674, Springer, 2019.

[6] K. Liu, X. Zhang, P. Arcaini, F. Ishikawa, and W. Jiao, “Lever-

aging test logs for building a self-adaptive path planner,” in

Proceedings of the IEEE/ACM 15th International Symposium

on Software Engineering for Adaptive and Self-Managing Sys-

tems, pp. 57–63, 2020.

[7] T. Schmidt, F. Hauer, and A. Pretschner, “Automated anomaly

detection in cps log files,” in International Conference on

Computer Safety, Reliability, and Security, pp. 179–194,

Springer, 2020.

2022년 한국컴퓨터종합학술대회 논문집

269

	Automatically Generating Behavior Descriptions of a Cyber-Physical System-of-Systems

