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Abstract 

Cyber-Physical System-of-Systems (CPSoS) is a set of Cyber-Physical Systems (CPSs) that interact with each other and operate 

in a physical environment. When developing or prototyping such complex systems, engineers make various decisions based on not 

only the facts in the system and environment but also their assumptions in uncertain cases of the system operation. However, these 

assumptions may be inaccurate resulting in a gap between expectations and reality, which may result in unintended behavior or 

failure of the system. To address these issues and to realize realistic knowledge, analyzing uncertainties of CPSoS from field 

execution is critical in iterative development processes. Therefore, in this study, we propose a search-based method to automatically 

generate behavior descriptions of CPSoS in the form of a causal relationship of two propositions obtained from field experiment 

data. In a case study, we applied the proposed method and evaluated the generated behavior descriptions to reveal that they provide 

useful insights into the target CPSoS for the next cycle of development. 

1. Introduction 

Cyber-Physical System-of-Systems (CPSoS) is a distributed yet 

interconnected system of Cyber-Physical Systems (CPSs) interacting 

with each other while operating in a physical environment [1]. During 

development, engineers make various decisions based on the 

assumptions of the system behaviors and the surrounding physical 

environment [2] that has innate uncertainties [3]. Consequently, 

engineered CPSoS may not operate as anticipated, resulting in a 

discrepancy between the assumptions and what transpires in the real 

world.  

This encounter of uncharted situations not only ensues a gap 

between the assumption and reality, but also can result in unintended 

behavior or failure of the system. To minimize this gap and obtain 

realistic knowledge, analyzing uncertainties of CPSoS from field 

execution is critical in iterative development processes. Consequently, 

engineers may generate descriptions to capture their knowledge of 

CPSoS behaviors and its environment for the next iteration in the 

engineering process. However, engineers' incomplete understanding 

of the system may bias the descriptions and inaccurately capture the 

CPSoS behaviors. In addition, engineers cannot generate behavior 

descriptions of unknown characteristics. 

Therefore, in this paper, we applied a search method to 

automatically find CPSoS behavior descriptions. The descriptions are 

in the form of a causal relationship of propositions obtained from the 

field experiment data, which reflects the real behaviors of the CPSoS. 

Accordingly, found descriptions indicate what actually occurs in the 

system operation and the surrounding context, which may help 

engineers to have a better understanding of the system behaviors. 

Through a case study on a real CPSoS, the proposed search method 

was evaluated. The generated behavior descriptions revealed useful 

insights, such as the interactions between the constituent CPSs and 

the relationships between different actuator variables. 

2. Background 

Genetic Algorithm (GA) is a type of search method that mixes and 

mutates solution representations (i.e., chromosomes) and applies 

evolutionary pressure to drive the search for an optimal solution. GA 

is used to solve complex problems that may be too intricate or 

impossible to solve using a rule-based solver. Because GA searches 

from a large search space, proper 1) representation of the 

chromosomes, 2) designs of genetic operators, and 3) construction of 

fitness function are crucial to find optimal solutions to a given 

problem. In this paper, GA is applied to generate behavior 

descriptions of a CPSoS solely based on the field experiment data.  

3. Approach 

The overall process for generating CPSoS behavior descriptions is 

demonstrated in Figure 1, which utilizes GA. After engineers develop 

a CPSoS, they can execute the system to obtain the field experiment 

data. The data is a time-series data of the observable variables (e.g., 

sensing and actuating variables) recorded by each CPSs in the CPSoS. 

First, the field experiment data is used to generate initial population 

according to the chromosome representation and to evaluate 

population by the fitness function. Then, genetic operators are 

applied to the selected parent population to evolve and generate 

offspring. The detailed representations of the chromosomes, design 

of genetic operators, and construction of the fitness function are 

described in the following sections. 

3.1 Chromosome Representation 

To generate and evolve CPSoS behavior descriptions, we first 

represent a behavior description as a causal relationship between two 
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propositions. The cause-and-effect relationship of the propositions 

demonstrates the flow of time in the CPSoS operation. A proposition 

contains two variables from the field experiment data and an operator. 

The operator captures the relationship between the variables and can 

be represented as < , ≤ , > , ≥ , == , and ≠ . A behavior description 

structure is visualized in Figure 2. The search space of a description 

is limited to the number of variables and the time span of each 

variable from the field experiment data. 

3.2 Genetic Operators 

To evolve the chromosomes (i.e., behavior description), we design 

the genetic operators using the chromosome representation defined 

above. Since a behavior description is composed of propositions, 

which can further be decomposed into a relationship of variables, the 

genetic operators are also designed to reflect this hierarchy. Behavior 

crossover swaps the propositions in two parent descriptions to 

generate two offspring, as shown in Figure 3. On the other hand, 

variable-operator crossover exchanges the lower-level elements of 

the descriptions, such as variables and operators. The variable-

operator crossover is illustrated in Figure 4. 

The mutation operators are also designed to address the hierarchy 

of the behavior description. The behavior mutation either randomly 

generates an entirely new proposition or swaps the two propositions 

in a behavior description to create a new offspring (Figure 5). 

Similarly, variable-operator mutation either randomly generates an 

entirely new variable or operator in a proposition or swaps variables 

or operators in a behavior description (Figure 6). 

3.3 Fitness Function 

A fitness function is used to guide the search in GA. The 

constructed fitness function in Equation 1 evaluates the generated 

behavior descriptions.  

𝑠𝑐𝑜𝑟𝑒 =
𝑡𝑝

𝑡𝑝 + 𝑡𝑛
∗ 𝑃𝑒𝑛𝑡𝑖𝑚𝑒 ∗ 𝑃𝑒𝑛𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 ∗ 𝑃𝑒𝑛𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 (1) 

tp, or true-positive, counts the number of cases a behavior description 

is satisfied in the field data. On the other hand, tn, or true-negative, 

counts the number of cases that a behavior description is not satisfied. 

Therefore, 
𝑡𝑝

𝑡𝑝+𝑡𝑛
  quantifies the ratio that the given behavior 

description is really observed in the field experiment. 

In addition to the occurrence ratio of the behavior descriptions, the 

given behavior description was further assessed by introducing time, 

cohesion, and coupling penalties to guide the search. The three 

penalty values are between 0 and 1, and thus reduces the overall score 

even when only one penalty criterion is met. 

Time penalty, 𝑃𝑒𝑛𝑡𝑖𝑚𝑒 , is intended to penalize behavior 

descriptions with large time gaps. Although a behavior description 

may be revealed with significant time lag, stating a causal 

relationship may be impetuous. Consequently, we assign a time 

penalty to descriptions when the maximum time difference between 

variables is greater than a certain time threshold. Cohesion penalty, 

𝑃𝑒𝑛𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 , assesses the relatedness of the variables in a proposition. 

Propositions containing different variable types are penalized. To 

retain the diversity of the behavior descriptions, we incrementally 

increase the cohesion penalty after each iteration of the search. In 

addition, coupling penalty, 𝑃𝑒𝑛𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 , evaluates the 

interdependence among the propositions in a behavior description. 

Coupling penalty is applied to penalize behavior descriptions with 

the same system or variable types in two propositions. 

4. Evaluation 

A case study was performed to evaluate the proposed method on 

Platooning LEGOs [4], which is an open CPSoS experimental 

Figure 1: GA Process for Generating Behavior Descriptions 

Figure 2: Representation of a Behavior Description 

Figure 3: Behavior Crossover 

Figure 4: Variable-Operator Crossover 

Figure 5: Behavior Mutation 

Figure 6: Variable-Operator Mutation 
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environment using robot vehicles. The two vehicles each have a role, 

a leader (Veh 1) and a follower (Veh 2), respectively, and drive on a 

square track with rounded corners. The implementation of the 

proposed method can be found in our repository 1 . Experiment 

settings are shown in Table 1. The generated behavior descriptions 

are shown in Table 2, which were further scrutinized with respect to 

the domain knowledge.  

Table 1: Experiment Setting 

 Parameter Value 

Search 

Initial Population Size 200 

Population Size 100 

Crossover Rate 0.6 

Mutation Rate 0.2 

Budget 100 

Fitness 

Function 

Max Time Difference 30 

Time Penalty 0.1 

Coupling Penalty 0.9 

Cohesion Penalty Step Size 0.01 

Table 2: Generated Behavior Descriptions 

 If Then Score 

1 Veh 1 integral at t+0 ≤ 

Veh 1 integral at t+5 

Veh 2 integral at t+5 ≤ 

Veh 2 integral at t+6 

88.89 

2 Veh 1 distance at t+0 ≤ 

Veh 1 distance at t+4 

Veh 1 integral at t+5 ≤ 

Veh 1 integral at t+6 

92.20 

3 Veh 2 speed at t+0 ≤ 

Veh 2 speed at t+20 

Veh 2 integral at t+20 ≤ 

Veh 2 integral at t+21 

90.51 

 

The first description is a relationship between integral values of 

two vehicles. The integral value is a system variable used in the 

proportional–integral–derivative controller for the adjustment of the 

steering angle of the vehicle. In our scenario, the integral value 

increases when the vehicle passes through the corners of the track. 

The generated behavior description discloses that the follower 

vehicle enters the corner section at least five ticks after the leader 

vehicle enters the corner. Thus, this description reveals the 

relationship between the two CPSs. 

The second description is a relationship between distance and 

integral of the leader vehicle. Since our track was placed parallel to a 

wall, the distance readings can be reduced when the leader vehicle is 

approaching the wall. This description shows that after the leader 

vehicle senses the wall, it begins to turn the corner of the track. Thus, 

this statement provides insight into our experimental environment 

that was overlooked. 

The third description is a relationship between speed and integral 

of the follower vehicle. Since the vehicles operated on a squared 

shape track, the follower vehicle consistently increased its speed at 

the straight section of the track, while decreasing speed at the corner 

section. Thus, this statement reflects the characteristic of the system 

through the relationships of the variable types where the integral 

value of the vehicle is increased after increase in speed. 

In our case study, we applied the proposed approach and found 

behavior descriptions that provide new and overlooked insights into 

the CPSoS behaviors and experimental environment. The frequency 

of the observed behaviors can be described with the score defined in 

this method. Because the descriptions were generated solely based on 

the field data, these descriptions appropriately reveal the real 

behaviors of CPSoS, thus providing knowledge in our system. 

1 https://github.com/est-cho/Belief-Finder 

5. Related Work 

There are various studies that analyze field experiment data logs of 

CPS to provide information on the goal-hindering factors, such as 

anomalies. Krismayer et al. proposed a method for run-time 

monitoring of the CPS behavior from the CPS event logs to generate 

system constraints [5]. Liu et al. introduced a path planner that 

automatically adapts for an autonomous vehicle to avoid collisions 

based on test logs [6]. Schmidt et al. proposed a method to 

automatically detect anomalies in CPS behaviors from execution log 

[7]. These studies focus on analyzing data logs to find incorrect 

operations of a CPS. On the other hand, our proposed method is 

centralized on generating behavior descriptions that can describe 

both correct and incorrect operations. 

6. Conclusion 

Engineers have preconceived assumptions of a CPSoS behaviors 

and physical environment in an iterative development process. 

However, manually capturing these behavior descriptions poses 

challenges, such as biasing the descriptions and infeasibility to elicit 

unknown behaviors. To address these challenges, we proposed a 

search-based method to automatically generate realistic behavior 

descriptions of a CPSoS from a field experiment data. A case study 

was conducted on a real CPSoS to show the applicability of the 

proposed method. The generated descriptions revealed behavior 

relationships of the system and the environment, which may be used 

to develop metamorphic relations of a CPSoS for testing.  
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