A Platform-Independent Software-Intensive Workflow Modeling
Language And An Open-Source Visual Programming Tool
A Bottom-Up Approach Using Ontology Integration Of Industrial Workflow Engines

Yong-Jun Shin* Wilfrid Utz
ETRI OMIiLAB NPO
Daejeon, South Korea Berlin, Germany
yjshin@etri.re.kr wilfrid.utz@omilab.org
Abstract Industrial Workflow Engines. In The 40th ACM/SIGAPP Symposium on Ap-

plied Computing (SAC °25), March 31-April 4, 2025, Catania, Italy. ACM, New

Many contemporary software-intensive services are developed as)
York, NY, USA, 10 pages. https://doi.org/10.1145/3672608.3707840

workflows of collaborative and interdependent tasks. Industrial
workflow platforms (i.e., engines) such as Airflow and Kubeflow au-
tomatically execute and monitor the workflow specified in platform-

specific code. The code-based workflow specification becomes com- 1 Introduction

plex and error-prone as services grow in complexity. Furthermore, As the complexity of modern services, such as Al-enabled services,
differences in platform-specific workflow specifications cause inef- increases, workflows have been considered as an effective tool to de-
ficiencies when porting workflows between platforms, even if the compose and manage tasks that a service shall accomplish [21]. Con-
different platforms handle semantically the same workflow. sequently, the software industry has proposed various workflow
In this paper, we propose a bottom-up approach for develop- engines. This paper considers four open-source workflow engines
ing a platform-independent software-intensive workflow modeling developed by industry-leading institutions with a considerable num-
language. The approach systematically extends the UML activity ber of users and documentation: Airflow, Kubeflow pipeline, Argo
diagram by building platform-independent ontologies of the work- workflow, and Metaflow!. They commonly provide deployment,
flow specification from the given target industrial workflow en- execution, orchestration, observation, and versioning of workflows.
gines. Based on the approach, we develop a platform-independent While these features are powerful, skilled developers are required
Workflow Modeling Language (WorkflowML) that covers four fa- to create platform-specific workflow specification codes, which are
mous workflow engines (Airflow, Kubeflow, Argo workflow, and often longer than hundreds of lines, and thus are prone to errors.
Metaflow). Furthermore, we implement an open-source visual pro- Additionally, in the event of business contract changes or other rea-
gramming tool for WorkflowML using the ADOxx metamodeling sons that require the migration of developed workflows to different
platform. We validate our approach by evaluating the expressive- platforms, the transformation of the workflow specifications incurs
ness of WorkflowML based on modeling case studies of 42 simple significant costs, even if all constituent tasks are executable on two
workflows and two real-case workflow-based services. The eval- or more platforms. Although there are commercial tools that sup-
uation results validate that WorkflowML serves as an effective port visual programming of workflow, such as Kissflow, Camunda,
common visual language for target workflow engines, supported and Lucidchart, they are limited by pre-built tasks that constitute a
by an open-source visual programming tool. workflow, so primarily target non-expert service developers.
To overcome the challenges, we develop a modeling language
CCS Concepts that can be shared among platforms that exclusively support code-

based workflow specifications for experts, so that engineers can
facilitate the development of software-intensive workflows. Specif-
Keywords ically, replacing code with models can reduce the cost of workflow
specifications. Furthermore, a platform-independent modeling lan-
guage allows workflows to run across various workflow engines

by serving as the foundation language for platform-specific code
ACM Reference Format: generation.

Yong-Jun Shin and Wilfrid Utz. 2025. A Platform-Independent Software-
Intensive Workflow Modeling Language And An Open-Source Visual Pro-
gramming Tool: A Bottom-Up Approach Using Ontology Integration Of

« Software and its engineering — System modeling languages.

Workflow, Domain-specific modeling language, Metamodeling, Vi-
sual programming, Tool, ADOxx, Ontology

In this context, we propose and conduct a bottom-up approach
to develop a platform-independent modeling language to specify
a software-intensive workflow. We build platform-independent

*Corresponding author ontology by integrating platform-specific ontologies of the tar-

get workflow engines. In this bottom-up manner, we pursue plat-
form independence by both uniting common concepts among plat-
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 forms and embracing platform-SpeCiﬁC concepts. We extend the

International License.

SAC °25, March 31-April 4, 2025, Catania, Italy

© 2025 Copyright held by the owner/author(s). _—

ACM ISBN 979-8-4007-0629-5/25/03 !https://airflow.apache.org/, https://www.kubeflow.org/, https://argoproj.github.io-
https://doi.org/10.1145/3672608.3707840 /argo-workflows/, and https://metaflow.org/, respectively

1421

https://orcid.org/0000-0001-6068-5054
https://orcid.org/0000-0002-6661-4668
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://doi.org/10.1145/3672608.3707840
https://doi.org/10.1145/3672608.3707840

SAC 25, March 31-April 4, 2025, Catania, Italy

UML activity diagram metamodel based on the integrated platform-
independent ontology to develop a platform-independent Work-
flow Modeling Language (WorkflowML). We also develop an open-
source WorkflowML visual programming tool for practitioners,
using the ADOxx metamodeling platform [13].

In summary, the key contributions of this paper are as follows:

e Proposal of a bottom-up UML extension method using ontol-
ogy integration for developing platform-independent mod-
eling languages.

o Development of a platform-independent workflow modeling
language (WorkflowML).

o Implementation and release of an open-source WorkflowML
visual programming tool.

Furthermore, we evaluate WorkflowML by modeling 42 simple
workflows and two real services in our visual programming tool.

This paper is organized as follows: Section 2 introduces related
languages and tools for workflow specification. Section 3 develops
the WorkflowML and the tool, and section 4 evaluates their effec-
tiveness. Section 5 reveals threats to the validity. Finally, Section 6
concludes this paper.

2 Related Work

Workflow modeling can be achieved using general-purpose process
modeling languages. For example, the UML activity diagram visu-
ally represents processes, such as workflows, illustrating the flow
of actions and objects [7]. Business Process Modeling Language
(BPML) enhances the clarity and efficiency of business process
specifications with many detailed notations tailored for various
purposes [15]. Yet Another Workflow Language (YAWL) is another
modeling language based on the formal specification and methods
of Petri-net [20]. These languages are not designed primarily only
for software specification; instead, they serve as highly abstracted
process specifications for various purposes. Consequently, directly
applying these languages to software-intensive workflow engines
of our interest is insufficient to develop executable services.

Some proprietary workflow modeling platforms offer visual pro-
gramming of workflows through pre-built tasks in this context.
For example, Kissflow?, identified as a low code platform, supports
the automation of business workflows in domains such as purchas-
ing, human resource management or asset management. Similarly,
Camunda® serves as a workflow automation tool for modeling, ex-
ecuting, and monitoring workflows built on BPML. These tools
provide prebuilt task implementations (e.g., email, database op-
erations, Google APIs, etc.), simplifying workflow execution by
requiring users only to input parameters. These tools predomi-
nantly cater to non-expert service developers, potentially limiting
their capabilities in developing intricate services like complicated
machine learning pipelines. Contrastly, this paper aims to propose a
common modeling language for platforms that exclusively supports
code-based workflow specifications for experts.

In this paper, we develop the platform-independent workflow
modeling language by extending the UML activity diagram. We
chose UML as the foundation of our language not only because of
its extension methods [7] but also the inherent complementarity

Zhttps://kissflow.com/
3https://camunda.com/

1422

Y.-J. Shin and W. Utz

among various modeling viewpoints (e.g., structures and behaviors)
within UML. Some studies are similar in purpose to this paper,
where activity diagrams have been used or extended for workflow
modeling. Dumas and Ter Hofstede evaluated the UML activity
diagram as a workflow specification language and revealed some
limitations in expressiveness [6]. To improve expressiveness, Sun
et al. extend it based on spatio-temporal topology that fuses control
and data flow [18]. Some studies extend it for specific domains,
such as the production system [3], health information system [17],
and the bioinformatics system [8]. Butt et al. extended the UML
activity diagram to create a workflow specification for a custom
workflow engine, closely similar to this paper [4]. The purpose of
extending UML in this paper, distinct from the related work, is to
create a visual language that popular industrial workflow engines
(specifically Airflow, Kubeflow, Argo Workflow, and Metaflow) can
commonly utilize for visual workflow specification.

3 Workflow Modeling Language And Tool

Development

Platform-specific workflow ontology building

Platform-independent workflow ontology building
(Ontology integration)
v

WorkflowML metamodeling
(Domain-specific UML extension)
v

WorkflowML modeling tool development

®

Figure 1: Platform-independent WorkflowML and tool devel-
opment method

()
()
()
()

In this section, we propose and conduct a bottom-up approach for
developing a platform-independent workflow modeling language.
We develop a domain-specific modeling language (DSML) [1, 11]
extending the UML, named Workflow Modeling Language (Work-
flowML), that allows for effective workflow specification and an
open-source tool that supports WorkflowML. Figure 1 shows the
overall development method. Specifically, we perform four steps: 1)
to collect the domain concepts thoroughly, we select some widely-
known industrial workflow platforms and extract their ontologies,
2) we integrate the ontologies to embrace the workflow platforms,
3) we define a metamodel of WorkflowML extending UML activity
diagram, and 4) we finally develop a modeling (i.e., visual program-
ming) tool by implementing the WorkflowML metamodel on the
ADOxx metamodeling platform. The following subsections describe
each step in detail.

3.1 Platform-Specific Ontology Building

To capture the concepts of the workflow recognized by the industry,
we first collect ontologies from independent workflow platforms
(i.e., engines), introduced in Section 2, in a bottom-up manner. We
define the ontology, propose an ontology-building process, and per-
form the process for each workflow platform under consideration.

A Platform-Independent Software-Intensive Workflow Modeling Language...

The ontology is a structured corpus (e.g., graph) of a specific
domain [2, 14, 22]. It systematically represents domain concepts and
their relationships, so it often serves as the foundation of DSMLs [10,
12]. In this paper, we define the ontology O = (V,E) as a graph,
composing a pair of a set of vertices V and a set of labeled edges
E = {(vx,1,0y)|vx,0y € V,risarelation label}. A vertexv € V
is a noun expressing a domain concept regarded as a node of an
ontology graph (e.g., a workflow and a task). An edge (vx,7,0y) is
a directed edge from a source vertex vy to a destination vertex vy,
with a relation label I. The label [is a verbal relation between v, and
vy from the point of view of vy (e.g. the composition of a task in a
workflow). In addition, we adopt a lightweight ontology (LWO) [9],
a specific type of ontology, whose every relationship label [is one of
four relationships used in UML metamodels ((1) attribute-to-class,
(2) subclassing, (3) equivalent-to, and (4) composition (relation-to)).
LWO serves our purpose of using the ontology to extend the UML
metamodel providing explicit alignment between the ontology and
the DSML metamodel in Section 3.3.

Algorithm 1: Ontology-building process for UML exten-
sion
Input :Set of domain documents D
Output:Ontology graph O
1 A set of vertices V «— 0
2 A setofedges E < 0
3 foreach d € D do
A set of clauses C « ClauseExtraction(d)
foreach ¢ € C do
(s, p,0) « SPOExtraction(c)
if isLWORelationship(p) then
Ve V+{so}
E—E+{(s,p,0)}
end

10

1 end

12 end

13 O« (V,E)

14 O « conceptClustering(O)
15 return O

Ontology building is often expert-centric and biased, so we pro-
pose an algorithmic ontology-building process in Algorithm 1. We
extend the ontology-building process of Omoronyia et al. [14] for
creating LWO for UML extension. Specifically, the process takes a
set of domain documents D which elaborate key concepts of the
domain such as technical reports, specifications, and guidelines; it
returns an ontology graph O based on the above definition. The
process starts by initializing two sets: V for the vertices and E for
edges, both empty (lines 1-2). It extracts all declarative clauses
describing concepts and relationships of the domain from all avail-
able documents and decomposes the clauses into triples of the
subject-predicate-object (SPO) to formalize concepts and relation-
ships (lines 3-6). Then only triples whose predicate is one of the four
types of LWO relationship are selected to be pushed into the output
ontology (line 7). The selected triples construct the ontology graph
(lines 8-13). These iterative steps collect concepts describing the
workflow, represented as vertices, that fit the LWO syntax as much
as possible. However, the ontology graph at this point could have

1423

SAC ’25, March 31-April 4, 2025, Catania, Italy

Table 1: Documents used for ontology building and the num-
ber of extracted vertices of workflow engines

Wox:kﬂow Documents (including all subpages) # of
engine vetices
https://airflow.apache.org/docs/
Airflow apache‘—airﬂow/ stable/ 46
- tutorial
- core-concepts
Argo work- https://argoproj.github.io/argo-workflows/
flow - workflow-concepts 63
- walk-through
https://www.kubeflow.org/docs/
Kubeflow components/pipelines/v1/ 33
pipeline - introduction
- concepts
Metaflow https://docs.metaflow.org/metaflow/basics 22

inconsistent or redundant concepts and relationships due to the
ambiguity and incompleteness of the given documents. Therefore,
the ontology graph is refined by concept clustering [14] to improve
consistency and completeness of the ontology (line 14). Specifically,
we (1) merge similar concepts and relationships, (2) add or remove
vertices and edges for a better understanding of the domain, and
(3) connect the separated graphs by adding glue concepts. Finally,
an ontology graph is returned (line 15).

In this paper, we take four famous industrial workflow engines
introduced in Section 2 (Airflow, Argo workflow, Kubeflow pipeline,
and Metaflow) as sources of the workflow ontology building pro-
cess. Engines support the effective execution and management of
workflows for various purposes, such as machine learning or data
analysis. Since the engines are already leading the industry and
show considerable consensus on the concepts of the workflow, we
extract the ontology from their official documents in a bottom-up
and industry-driven manner. We first collect official documents (e.g.,
user guides and tutorials) of the workflow engines, that describe
the concepts of the workflow, listed in Table 1. We then perform
Algorithm 1 to generate workflow ontology graphs for each engine.
The number of extracted vertices (i.e., concepts) for each engine’s
ontology graph is listed in Table 1. The four ontology graphs are
integrated in the next subsection to build a platform-independent
domain ontology, and due to lack of space, the ontology of each

engine is not further described in this paper?.

3.2 Platform-Independent Ontology Building
By Ontology Integration

The platform-specific ontologies show slight differences in the con-
cepts of the workflow, such as different types of workflow task
implementations (e.g., python scripts, docker containers). There-
fore, we create one common domain ontology by integrating the
platform-specific ontologies to create a modeling language that
can be shared by different workflow engines. We first convert the
metamodel of the UML activity diagram® into an LWO graph. Since
the relationships expressed in the UML metamodel are the same

4The WorkflowML tool repository: https://www.omilab.org/workflowml/
Shttps://www.omg.org/spec/UML/

SAC 25, March 31-April 4, 2025, Catania, Italy

a) Ontologies of workflow engines and UML
UML Activity

Argo Workflow Kubeflow Metaflow Airflow

Figure 2: Integration of platform-specific ontologies

as those of LWO, the ontology of the UML activity diagram can
be easily obtained by converting the metamodel into a graph form.
We then integrate it as a glue ontology with the platform-specific
ontologies. The UML ontology works as a skeleton during the inte-
gration and makes the integrated ontology directly mapped to the
workflowML metamodel by abstracting concepts of the workflow.
We use the Vanilla ontology merging algorithm [16]. We search
nodes that represent semantically the same concept redundantly
defined in multiple ontologies and merge them. To do that we
carefully perform the semantic mapping of the platform-specific
ontologies after reading all source documents of the ontologies.
Figure 2 visualizes the ontology integration. We manually combine
nodes meaning the same concept into one node. For example, the
‘activity’, ‘workflow’, ‘pipeline’, and ‘flow’, which denote sequences
of interdependent tasks or actions aimed at achieving a goal, are
merged. Through this process, an integrated ontology graph that
encompasses all concepts of different workflow engines is generated.
For example, in Figure 2, Kubeflow defines a pipeline as the flow
of ‘(containerized) components’, but Argo workflow regards both
‘container’ and ‘script’ (e.g., Bash or Python) components as the
task definitions of the workflow. The different components of the
workflow are accepted in the integrated ontology. It is noteworthy
that ontology integration does not simply increase the size of the
ontology but rather merges only the common concepts, allowing
the platform-specific differences to remain in the ontology. Refer
to the merging algorithms we perform for further detail [16].
Figure 3 shows a snippet of the integrated ontology. The sources
of the white nodes are the UML, and the sources of the yellow nodes
are the workflow engines. We can see that the ontology of UML
activity, which is purpose-general, has been extended. Specifically,
(a) workflow, (b) action, (c) structured node, (d) control node, and
(e) object node are extended by adding new subclasses or attributes.
This integrated ontology is the foundation of the WorkflowML

1424

Y.-J. Shin and W. Utz

metamodel. Therefore, (a)-(e) are explicitly represented in the work-
flowML metamodel, each of which is specifically described in the
next subsection.

3.3 WorkflowML Metamodeling

This section defines workflowML by extending the UML activity
diagram metamodel®. UML is a purpose/domain-general modeling
language but supports extensions for various purposes and domains
by adding purpose/domain-specific stereotypes and attributes [7].
In addition, the lightweight ontology (LWO) which contains se-
lected relationships based on the UML metamodel (Section 3.1) and
the UML activity ontology used as the glue for ontology integration
(Section 3.2) effectively support the extension of the UML meta-
model. Specifically, we repeat three major steps until all concepts
in the integrated domain ontology are represented in the meta-
model; (1) defining workflow domain-specific stereotypes of UML
activity metaclasses searching all ‘subclassing’ relationships in the
ontology, (2) connecting all metaclasses or stereotypes searching all
‘composition’ relationships in the ontology, and finally (3) adding
domain-specific attributes of metaclasses or stereotypes searching
all ‘attribute-to-class’ relationships in the ontology. Additionally,
discussions of authors and minor touches on the WorkflowML
metamodel are performed while reviewing the metamodel.

Figure 4 shows the workflowML metamodel. UML activity dia-
gram is extended in (a) workflow, (b) action, (c) structured node,
(d) control node, and (e) object node as already mentioned in Sec-
tion 3.2. Each part of Figure 4 is explained to show how WorkflowML
specifies a workflow-based service.

3.3.1 Workflow. A Workflow is a specification of the execution flow
of various actions and is also a living entity. Therefore, workflows
represent their current state (e.g., ready, running). Additionally, a
Schedule of the workflow execution can be given with the start
time and execution interval of the workflow. The workflow can
possess a storage Volume for resource sharing within the workflow
and execution History logs. Furthermore, attributes such as labels,
descriptions, and purposes are specified for workflow management.

3.3.2 Action. We define the smallest executable task that consti-
tutes a workflow Action. Each action has attributes such as state,
owner, ID, execution environment, execution conditions, and time-
out, which is the maximum execution time limit. Concrete actions
can be implemented by selecting from six types, based on the work-
flow engines: «Script for executing specific source code, «Container
for executing containerized programs, sResource for managing com-
putational resources utilized in the workflow, «Sensor for waiting
for specific external events, «Suspend for pausing execution for a
certain period, and finally, «Operator for various domain-specific
reusable action templates such as HTTP and SQL operations. The
attributes of each type of action are specified in Figure 4. Addition-
ally, WorkflowML is also an extensible language like UML, so it
allows defining new action types.

3.3.3 Structured node. A set of actions can compose a structured
node. Specifically, WorkflowML proposes new stereotypes of LoopN-
ode, namely ForEach and Retry. ForEach comprises actions that will
be iteratively executed in parallel for iterable input objects. Retry
comprises actions that are intended to be retried a certain number

A Platform-Independent Software-Intensive Workflow Modeling Language...

d) Control node

SAC ’25, March 31-April 4, 2025, Catania, Italy

a) Workflow

: DependsOnPast

i e) Object node

Gy

ControlNode
7 R

E InitialNode FinalNode

b) Action

JAN

ActivityFinalNode)

A 2\
>(ObjectNode

: History

Legend
5 g

UML activity concept
Workflow concept

A :
StructuredActivityNode (StructuredWorkflowNode) :
A H
LoopNode
< R

RetryStrategy

Figure 3: A snippet of integrated ontologies of the workflow platforms and the UML

of times in specific situations, such as execution failures, based on
given retry policies.

3.3.4 Control node. WorkflowML not only reuses control nodes
of UML (e.g., decision and fork nodes) but also proposes an exten-
sion of the decision node stereotype DependsOnPast. It represents
branching based on the past execution results of the workflow, so
it refers to the history of the workflow. Additionally, WorkflowML
allows the initial and final nodes of a workflow to have specific
actions as handlers.

3.3.5 Object node. Actions in the Workflow interact with input
and output objects, which can be broadly categorized into Artifacts
and Parameters. Parameters pass simple values, while artifacts pass
objects that cannot be conveyed as simple parameters but are stored
as structured data at specific paths. Artifacts can be further specified
with their extensions and categories. Additionally, the storage in
which the actions of the workflow can share data is defined as a
Volume, which is a new stereotype of DataStoreNode.

The detailed attributes and enumerations of the extended com-
ponents in WorkflowML are listed in Figure 4.

3.4 Modeling Tool Development

We develop an open-source modeling tool supporting our Work-
flowML using ADOxx metamodeling platform developed by OMi-
Lab NPO [13]. ADOxx supports implementing graphical notations
and grammar of the DSML. We defined metamodel and graphical
notations of WorkflowML in ADOxx by inheriting UML metaclass
library. The implementation result can be downloaded as an ADOxx
library file from our repository*.

Users can use or extend our WorkflowML modeling tool by load-
ing the WorkflowML library file on ADOxx, an open-use platform.
Figure 5 illustrates the WorkflowML modeling tool, comprising a

1425

menu bar, a model explorer, a palette of WorkflowML components,
and a drawing panel. By selecting WorkflowML components from
the palette, users can specify a concrete workflow on the drawing
panel. Users can also edit the attributes of the components in detail
by double-clicking on them. The model can be extracted not only in
image form (JPG, etc.) but also in a machine-readable format (XML)
for further processing, such as automatic workflow code generation.
To aid users in becoming familiar with the WorkflowML modeling
tool, we provide example models of 42 simple workflows and two
real-case workflows, along with the WorkflowML library*. These
examples are used in the following evaluation section.

4 Evaluation

We have developed a WorkflowML and its accompanying tool. In
this section, we aim to evaluate whether WorkflowML is an ef-
fective DSML that promotes model-based workflow specification.
Specifically, we answer the following three research questions (RQ):

e RQ1:Does WorkflowML reflect concepts of software-intensive
workflow well?

e RQ2: Does WorkflowML support platform-independent model-
based workflow specification?

e RQ3: Can WorkflowML be applied in the specification of
real-world workflow-based services?

The following subsections are dedicated to each research question.

4.1 Representation of Software-Intensive
Workflow Concepts

WorkflowML is a modeling language to specify software-intensive

workflows extended from UML activity diagram. Table 2 summa-

rizes the number of WorkflowML components (metaclasses and
stereotypes) categorized into those reused from UML and those

SAC ’25, March 31-April 4, 2025, Catania, Italy

<<metamodel>> WorkflowML |

Y.-J. Shin and W. Utz

<<profile>> a) Workflow <<profile>> e) Object node I
<<stereotype>> <<metaclass>>
Workflow P UML::D: UML::ObjectNode UML::Pin
<<metaclass>> + label: String ? % %
UML::Activity [« + status: WorkflowStatus
+ workflowEngine: String <<stereotype>> <<stereotype>> <<stereotype>>
+ purpose: String Volume Artifact Parameter
+ description: String
0.1 0. 0" + path: String + extensionType: ArtifactExtensionType | |+ value: String
" " - ? + volume S + category: ArtifactCategory + type: PrimitiveType
= + history + size: String + path: String
<<enumeration>> + schedule + secrete: String
Status 1 History -
<<enumeration>> ") 5
1 — ArtifactCategory ArtifactExtensionType
:ﬁ:x-\g + log: String K8sVolumeAccessMode
success 0. + readWriteOnce : ?:22:?(: :,';ecmry
failed + startAt: String + readOnlyMany M N et
none + interval: String 3 + readWriteMany protncs Zp
S ! + documents + else
S + readWriteOncePod +else
®
<<profile>> d) Control node o3
1ot <<profile>>
yp! c) Structured node
UML::D: < D OnPast UML::ActivityFi umL
<<metaclass>>
+ handler $0--1 . handler?o“1 UML::LoopNode
<<profile>> b) Action <<stereotype>>
0. ForEach
<<stereotype>> <<stereotype>>
Status «'"etadas's» WorkflowAction Sensor <<stereotype>>
UML::Action < Retry
ready + status: Status + eventSpecification: String
running + owner: String + limit; int
success <<stereotype>> +id: String = = + delay: String
skipped e + purpose: String ST + policy: RetryPolicy
failed + timeout: String
ore + action: ResourceAction + condition: String . 8 : <<stereotype>> <<enumeration>>
- Stri duration: Strin
+ manifest: String + executionEnv: String ' 9 HttpOperator RetryPolicy
+ always
[|] <<stereotype>> onFallure
A yp! <<stereotype>> <<stereotype>> SQLOperator onError
Script Container Operator onTransientError
get
create + interpreter: String + image: String (2]
apply + source: String + command: String DockerOperator Legend
delete + command: String + args: String
replace + args: String + resource: String -
patch + - Volume <<stereotype>> UML original component
+ environment: String EmailOperator
Extended component

!

EEEEEEEEEEEEE)

arifacts
conditionals

exitHandler
hello_world

loops
outputparameters
prameters

ety
scriptsndResults

Bl steps
& £ Kubeflow

8] loop_parleism
&) loop_parameter

&) loop_static

) paale join

8) paatesm_sub_dag
8] recursion2

DESHIT S X aDNSHE

Figure 4: WorkflowML metamodel

D @& @2
e & X

1+
1 —> 2
1| Whit WhY WhS
1

Figure 5: The open-source WorkflowML modeling tool

Table 2: Summary of the number of WorkflowML compo-

nents
WorkflowML component #
Reused (UML activity components) 33
Extended (Domain-specific components) 22
Total 55

extended for workflow domain purposes. We selected 33 core meta-
classes of UML activity and reused them in WorkflowML. Then we
developed 22 new components extended from the UML components
for software-intensive workflow specifications.

In this subsection, we qualitatively assess whether WorkflowML
reflects domain-specific (i.e., software-intensive workflow) concepts
well. First, we identify and enumerate the concepts commonly ad-
dressed in the software-intensive workflow specifications of the
industrial workflow engines covered in this paper in Table 3. We
intentionally refrain from listing concepts typically addressed in
general process modeling, such as a specification of task flows or
hierarchical tasks, in the table. Instead, we exclusively enumerate

1426

A Platform-Independent Software-Intensive Workflow Modeling Language...

concepts specialized for modern software-intensive workflow en-
gines, which are selected under the authors’ discussion based on
the documents of workflow engines. We then assess how Work-
flowML concretely represents these concepts. For comparison, we
also assess the expressiveness of well-known domain-general pro-
cess modeling languages. Specifically, we compare WorkflowML
with UML activity diagram®, Business Process Model and Language
(BPML) [5], and Yet Another Workflow Language (YAWL) [19]
according to their official specifications. Table 3 presents the evalu-
ation results, where each row represents the evaluation result of
WorkflowML and the other languages in terms of the coverage of
concepts in the workflow specification. Concepts explicitly speci-
fied by corresponding modeling components (i.e., metaclasses and
stereotypes) are marked with ‘O’, concepts indirectly represented
by sets of abstract modeling components are marked with ‘A’, and
concepts not covered by modeling languages are marked with X’.
Additionally, modeling components used to model the concepts are
noted.

Table 3 illustrates that WorkflowML is a domain-specific model-
ing language defined to model the concepts covered by industrial
workflow engines as concrete modeling components, compared to
the other domain-general process modeling languages. The eval-
uation results for each concept in the modeling languages are as
follows: 1) The workflow engines support the automatic execu-
tion of workflows iteratively according to predefined schedules.
Therefore, while BPML and YAWL allow independent tasks to have
time-based triggers, WorkflowML enables a workflow (i.e., a flow of
tasks) itself to explicitly possess schedule nodes. 2-3) The engines
store the execution histories of workflows. In addition, workflow
executions may depend on the past execution results (i.e., histo-
ries). For instance, tasks successfully executed yesterday might
not be rerun today. UML, BPML, and YAWL do not address these
concepts, but WorkflowML explicitly defines a history repository
node for storing past execution results and a conditional node that
depends on the history. 4) Constituent tasks of a workflow managed
by the engines can have a shared data directory. While UML and
BPML can abstractly model such shared repositories using ‘Central
buffer’ or ‘Data store’ nodes, WorkflowML concretely models the
shared directory as the ‘Volume’ node defining concrete attributes
including storage size, path, and access mode. 5) Workflow en-
gines can also specify the repetitive execution of tasks for iterable
items. ‘Multiple instance task’ in BPML and YAWL models such
repetitive executions, and WorkflowML also specifies this as the
‘ForEach’ node. 6) Workflow engines provide retry strategies for
failed task executions. Modelers can indirectly express such retry
strategies using loops of UML, BPML, and YAWL. On the other hand,
WorkflowML concretely specifies these retry strategies as ‘Retry’
nodes. 7) Finally, workflow engines support the implementation of
software-intensive tasks. UML, BPML, and YAWL support abstract
task specifications, but WorkflowML provides various types of
software-intensive tasks supported by industrial workflow engines,
such as containers and scripts defined in Section 3.3. Therefore,
users can easily develop executable tasks by filling in the attributes
of these WorkflowML components. In this manner, WorkflowML
is defined to explicitly specify software-intensive workflows for
industrial workflow engines.

1427

SAC ’25, March 31-April 4, 2025, Catania, Italy

4.2 Effectiveness of Platform-Independent
Model-Based Workflow Specification

Previously, we qualitatively evaluated that WorkflowML covers the
concepts in software-intensive workflow specifications. Now, we
assess whether WorkflowML has sufficient expressiveness to sup-
port model-based workflow development for industrial workflow
platforms. The code-based workflow specifications of the platforms
often suffer from low readability and are prone to errors. We be-
lieve the model-based workflow specification can greatly facilitate
efficient specification, development, analysis, and management of
workflow-based services. To achieve this, WorkflowML should be
able to sufficiently specify as much information as possible that is
required to execute the services in the workflow platforms.

To measure WorkflowML’s expressiveness, we defined an “vi-
sual programming coverage" (VP coverage) as the ratio of lines
of code (LoC) explicitly specified in the workflow model to the
total LoC in the code-based workflow specification. For example,
if a specific workflow service is specified by 100 LoC, and Work-
flowML can specify 90 lines among the 100 lines in a model, the
VP coverage of WorkflowML for the service would be calculated
as 90%. To evaluate the expressiveness, we collected all core exam-
ple workflows introduced in tutorials of the workflow engines, as
shown in Table 4. Then, we manually model each of these work-
flows using WorkflowML and count the LoC that could be explic-
itly specified in the workflow model compared to the LoC of the
original code-based specification. For instance, in Table 4, the “ex-
ample_nested_branch_dag" workflow from Airflow is originally
specified with 56 lines of code (LoC), out of which 47 lines can be
specified in our workflow model, while nine lines cannot.

Table 4 displays the VP coverage of WorkflowML for each of the
42 example workflows we collected. In the collected cases, Work-
flowML achieved an average VP coverage of 90% for expressiveness.
It demonstrates that WorkflowML can specify a substantial portion
of the necessary content for workflow development within the
model. However, WorkflowML is a platform-independent modeling
language, so it does not specify all platform-specific details. For
example, WorkflowML does not cover some Kubernetes-specific at-
tributes used in Argo workflow’s “Retrying_failed_or_errored_steps"
and “Scripts_and_results” examples, while it can model most of the
the other examples of Argo workflow. The remainings not cov-
ered are most typical redundancies or syntactic patterns for each
platform, so they can be tailored to each platform based on Work-
flowML with little effort. More importantly, WorkflowML enables
visual workflow specification with high VP coverages.

Simultaneously, we have confirmed that it is possible to gener-
ate workflow specifications for various workflow engines using a
platform-independent modeling language, WorkflowML. As Work-
flowML is based on an integrated domain ontology that merges
platform-specific ontologies by semantic matching, it can suffi-
ciently specify workflows for all engines of interest. This is shown
in the high VP coverages for all workflow engines. Therefore, Workl-
fowML is an effective modeling language of software-intensive
workflow that can be commonly used for the four workflow en-
gines under test. In addition, our bottom-up approach is also vali-
dated as effective in systematically building a platform-independent
modeling language.

"

SAC 25, March 31-April 4, 2025, Catania, Italy

Y.-J. Shin and W. Utz

Table 3: Domain-specific concept expressiveness of WorkflowML and domain-general process modeling languages. O/A/X
indicates that the concept is explicitly, indirectly, or not expressible, respectively, by the language.

Domain-specific concept UML BPML YAWL WorkflowML
1. Workflow execution schedule X A (Timer) A (Time task) O (Schedule)
2. Workflow execution history X X X O (History)
3. Conditional execution of actions depending on the past execution X X X O (DependsOnPast)
4. Workflow data directory A (Central buffer) A (Data store) X O (Volulme)
. . . A O (Multiple O (Multiple (¢}
5. Parallel task execution for iterable items (Loop) instance task) instance task) (ForEach)
6. Retry of failed workflow tasks A (Loop) A (Loop) A (Loop) O (Retry)
7. Domain-specific types of workflow tasks A (Action, etc.) & (Send, Recieve, A (Task, etc.) O (Container,

Manual, etc.)

Script, etc.)

In summary, WorkflowML can effectively support model-based
workflow development by replacing the majority of workflow spec-
ification contents with models instead of code. This suggests the
potential for creating a model-based framework for developing
workflow-based services using WorkflowML. Furthermore, Work-
flowML can be used as a common workflow specification language
for industrial workflow engines.

4.3 Real Case Applications of the WorkflowML

<<Parameter>>
openai.api_key

<<Workflow>> ChatGPT audiobot workflow
; <<8cript>> ; <<Script>> ; <<Script>>
. [install_ffmpeg J [download_recording j [transcribe_audio }

<<Script>>
upload_transcript

<<8cript>>
upsert_text_embedings

<<Script>>
query_chat_gpt

[o i |

Figure 6: ChatGPT audio-bot workflow

J>®

Finally, we conduct case studies applying WorkflowML to real
workflow-based services. We found two interesting workflow-based
services on GitHub that were originally specified using Airflow
code, and we modeled them using WorkflowML. Figure 6 and 7
show the model-based specification results for both cases.

The first case is a workflow-based ChatGPT audio bot for the
meeting assistance application shown in Figure 6, which was orig-
inally specified in 249 LoC®. The workflow involves a series of
actions, including installing an audio processing library, download-
ing recordings, transcribing and uploading audio files, performing
text embedding, and querying ChatGPT. This entire workflow is
visually specified using WorkflowML, making it easy for developers
to design and manage the audio bot service effectively. As evaluated
in RQ2, the VP coverage of WorkflowML for this case is 92.77%, as
231 lines out of the 249 lines in the workflow specification could be
modeled.

The second case shown in Figure 7 is a machine learning work-
flow service for performance prediction of NBA teams and players

®ChatGPT audio bot: https:/github.com/anujkumar98/Meeting-Intelligence-

Application/blob/main/Airflow/dag.py

1428

// <<wDrkﬂnw>>Wermrmance prediction workflow

/ o
/

/

/ \/ \ l/ \) / \
/ ~ ~ P \
<<Script>> <<Script>> <<Script>>
feteh_MVP_training_data feteh_new_player_data feteh_DPOY_training_data
\ J B Y, J
\l/ ’ \L/
J
\ ~
<<Script>> <<Script>>
train_MVP_model train_DPOY_model
v \/ \/ WV
\/ V.
<<Script>> <<Script>>
make_MVP_prediction make_DPOY_prediction
Vv \V
'd Y
<<Script>> <<Script>>
. fetch_ROY_training_data fetch_SMOY _training_data
\ o
\/ \\L \l/« \V
g N =~
<<Script>> <<Script>> <<Script>> <<Script>>
fetch_new_rookie_data train_ROY_model train_SMOY_model feteh_new_substitute_data
M AN P N — -
AV \V4 4 V4
4 V4
- ~
<<Script>> <<Script>>
make_ROY_prediction make_SMOY_prediction
\ J
N NF
W/ / \
<<Script>>
save_prediction_results
\ N NV - |
\\ N4 //
\ / \\ /
\ /
| ®)

Figure 7: NBA team performance prediction workflow

based on multiple data sources in parallel, which is originally speci-
fied in 459 LoC”. Whenever new data about players and teams come
in, the workflow is triggered to run. The performance prediction is
done in parallel for Most Valuable Player (MVP), Defensive Player
of the Year (DPQOY), Rookie of the Year (ROY), and Sixth Man of
the Year (SMOY) awards. The results from all predictions are then
aggregated and stored. This service includes numerous parallel ma-
chine learning tasks, and WorkflowML could explicitly model the
dependencies of the parallelism. In this case, WorkflowML achieved
an VP coverage of 95.2%, as 437 lines out of 459 lines of code could
be specified in the model.

"NBA performance prediction: https://github.com/Sapphirine/202212-19-NBA-Player-
Awards-and-Team-Performance-Prediction/blob/main/Player_DAG.py

A Platform-Independent Software-Intensive Workflow Modeling Language...

SAC ’25, March 31-April 4, 2025, Catania, Italy

Table 4: Expressiveness evaluation results of the workflow specification of WorkflowML

LoC of workflow Visual programming

Workflow platform Example workflow name Total (a) Modeled (b) coverage (b/a)(%) Average
Example_nested_branch_dag 56 47 83.93%
Example_task_group 64 55 85.94%
Example_bash_operator 76 66 86.84%
Tutorial_taskflow_api_virtualenv 87 74 85.06%
. Example_branch_datetime_operator 104 95 91.35%
Airflow Example_sensors 123 106 86.18% 87.65%
Tutorial_taskflow_api 107 94 87.85%
Tutorial 125 107 85.60%
Tutorial_dag 135 118 87.41%
Example_complex 220 212 96.36%
Hello_world 16 16 100.00%
Retrying_failed_or_errored_steps 23 19 82.61%
Parameters 26 26 100.00%
Recursion 34 34 100.00%
Secrets 34 34 100.00%
Scripts_and_results 50 34 68.00%
Argo workflow DAG 36 36 100.00% 96.20%
Output_parameters 38 38 100.00%
Steps 41 41 100.00%
Artifacts 43 43 100.00%
Exit_handler 44 44 100.00%
Loops 49 49 100.00%
Conditionals 64 64 100.00%
Loop_static 26 24 92.31%
Loop_parameter 27 25 92.59%
Hello_world 30 26 86.67%
Loop_parallelism 30 27 90.00%
- Loop_output 30 28 93.33%
Kubeflow pipeline Execution_order 38 34 89.47% 89.417%
Retry 39 35 89.74%
Condition 46 41 89.13%
Exit_handler 50 46 92.00%
Parallel_join 53 50 94.34%
Parameters 18 15 83.33%
Linear 20 17 85.00%
Advanced_parameters 23 20 86.96%
Foreach 27 24 88.89%
Metaflow Branch 31 28 90.32% 90.48%
Parallelism_sub_dag 34 30 88.24%
Sequential 48 45 93.75%
Data_flow 60 57 95.00%
Recursion 69 66 95.65%

We summarize the evaluation results based on our experience
of applying WorkflowML to real cases.

First, as indicated by RQ1 and RQ2, WorkflowML shows a promis-
ing level of expressiveness, supporting the development of software-
intensive workflow-based services. It enables the specification of
key aspects of workflows, such as actions, dependencies, and input
objects for execution. These results provide some validation for our
bottom-up approach to developing a workflow modeling language
based on industrial workflow engines.

Second, our tool has the potential to be beneficial for specify-
ing software-intensive workflows, which are often implemented
as code in popular workflow engines. For example, the NBA team
performance prediction workflow we modeled, originally written

1429

in 459 lines of code, includes 22 action dependencies. Understand-
ing the overall structure from code alone can be challenging. Our
language and tool significantly reduce this complexity by providing
a visual representation of workflows. Additionally, model-based
workflow specifications can serve as useful communication artifacts
for various stakeholders.

Lastly, WorkflowML has capacity to serve as a common language
for workflow specifications across different platforms. While code-
based specifications tend to be constrained by platform-dependent
grammar, WorkflowML offers a more consistent model-based spec-
ification that can be adapted for various platforms with relatively
little effort. For instance, the two workflow models we developed
for Airflow could be converted into workflow code for different

SAC 25, March 31-April 4, 2025, Catania, Italy

engines by mapping the contents of the model to the specification
grammar of another target engine.

5 Threats To Validity

An internal threat to the validity of WorkflowML is that its qual-
ity relies on the underlying domain ontology. To address this, we
constructed domain ontologies using various documents and well-
established ontology building and merging algorithms [9, 14, 16].
We also redefined the ontology-building process as an algorithm in
Section 3.1, and we have made the raw data publicly available for
reproducibility*.

Another internal threat, which is common in related works, is
the subjectivity in evaluating WorkflowML. To mitigate this, we
conducted both qualitative and quantitative evaluations. We com-
pared WorkflowML against popular process modeling languages to
see if it adequately represented industrial workflow concepts. We
also introduced a “visual programming coverage" to quantitatively
measure how well WorkflowML converts code-based workflow
specifications into model-based representations. While this evalua-
tion confirms WorkflowML’s domain specificity, further usability
testing covering human factors is planned for future work.

A potential external threat is that the evaluation may not gener-
alize well due to the limited cases used. To minimize this risk, we
modeled 42 simple tutorial workflows from four workflow engines
(RQ2). Although these examples are basic, they can be combined to
create complex real-case workflows, making the results applicable
to real-world scenarios. Additionally, in RQ3, we validated Work-
flowML using two real-case workflows from open-source reposi-
tories. As WorkflowML is extensible like UML, it can be tailored
for specific needs, making it a versatile tool for defining software-
intensive workflows in various industrial settings.

6 Conclusion

We have introduced a bottom-up approach for developing a platform-
independent modeling language for software-intensive workflow

specifications. With this approach, we have developed the Workflow

Modeling Language (WorkflowML) by extending the UML activ-
ity diagram. Furthermore, we have released an open-source visual

programming tool utilizing the ADOxx metamodeling platform.
WorkflowML is built upon an integrated ontology that captures

the concepts of software-intensive workflow specifications from

four popular industrial workflow engines (Airflow, Argo workflow,
Kubeflow, and Metaflow). Compared to well-known domain-general

process modeling languages, WorkflowML explicitly represents the

key concepts of software-intensive workflow specifications. The

expressiveness and applicability of WorkflowML, along with its

associated tool, have been validated through case studies involv-
ing 42 simple workflows and two real-case services. By replacing

code-based workflow specifications in industrial workflow engines

with model-based specifications, WorkflowML enhances the effi-
ciency of workflow development and management. Moreover, it

provides a language that can be shared across various platforms,

effectively supporting software compatibility and migration. In our

future research, we plan to utilize WorkflowML for agile machine

learning operations (MLOps) in industry, such as the model-based

continuous integration of autonomous driving workflows.

1430

Y.-J. Shin and W. Utz

Acknowledgments

This work was supported by Institute of Information & communica-
tions Technology Planning & evaluation (II'TP) grant funded by the
Korea government (MSIT) (No.RS-2024-00406245, Development of
Software-Defined Infrastructure Technologies for Future Mobility)

References

[1] Young-Min Baek, Zelalem Mihret, Yong-Jun Shin, and Doo-Hwan Bae. 2020. A
modeling method for model-based analysis and design of a system-of-systems. In
2020 27th Asia-Pacific Software Engineering Conference (APSEC). IEEE, 336-345.
Young-Min Baek, Jiyoung Song, Yong-Jun Shin, Sumin Park, and Doo-Hwan Bae.
2018. A meta-model for representing system-of-systems ontologies (SESoS ’18).
Association for Computing Machinery, New York, NY, USA, 1-7.

Ricardo Melo Bastos and Duncan Dubugras A Ruiz. 2002. Extending UML activity
diagram for workflow modeling in production systems. In Proceedings of the 35th
Annual Hawaii International Conference on System Sciences. IEEE, 3786-3795.
Anila Sahar Butt, Nicholas J Car, and Peter Fitch. 2020. Towards Ontology Driven
Provenance in Scientific Workflow Engine.. In MODELSWARD. 105-115.
Michele Chinosi and Alberto Trombetta. 2012. BPMN: An introduction to the
standard. Computer Standards & Interfaces 34, 1 (2012), 124-134.

Marlon Dumas and Arthur HM Ter Hofstede. 2001. UML activity diagrams
as a workflow specification language. In International conference on the unified
modeling language. Springer, 76-90.

Lidia Fuentes-Fernandez and Antonio Vallecillo-Moreno. 2004. An introduction
to UML profiles. UML and Model Engineering 2, 6-13 (2004), 72.

Laiz Heckmann Barbalho de Figueroa and Rema Salman. 2019. A UML Activity
Diagram Extension and Template for Bioinformatics Workflows: A Design Science
Study. (2019).

Constantin Hildebrandt, Aljosha Kécher, Christof Kiistner, Carlos-Manuel Lopez-
Enriquez, Andreas W Miiller, Birte Caesar, Claas Steffen Gundlach, and Alexander
Fay. 2020. Ontology building for cyber—physical systems: Application in the
manufacturing domain. IEEE Transactions on Automation Science and Engineering
17, 3 (2020), 1266-1282.

Dimitris Karagiannis. 2015. Agile modeling method engineering. In Proceedings
of the 19th panhellenic conference on informatics. 5-10.

Dimitris Karagiannis, Moonkun Lee, Knut Hinkelmann, and Wilfrid Utz. 2022.
Domain-Specific Conceptual Modeling: Concepts, Methods and ADOxx Tools.
Springer Nature.

Grigory Kulagin, Ivan Ermakov, and Lyudmila Lyadova. 2022. Ontology-Based
Development of Domain-Specific Languages via Customizing Base Language.
In 2022 IEEE 16th International Conference on Application of Information and
Communication Technologies (AICT). IEEE, 1-6.

OMILAB. 2022. Development of Conceptual Models and Realization of Mod-
elling Tools Within the ADOxx Meta-Modelling Environment: A Living Paper.
In Domain-Specific Conceptual Modeling: Concepts, Methods and ADOxx Tools.
Springer, 23-40.

Inah Omoronyia, Guttorm Sindre, Tor Stalhane, Stefan Biffl, Thomas Moser,
and Wikan Sunindyo. 2010. A domain ontology building process for guiding
requirements elicitation. In Requirements Engineering: Foundation for Software
Quality: 16th International Working Conference, REFSQ 2010, Essen, Germany, June
30-Fuly 2, 2010. Proceedings 16. Springer, 188-202.

Gregor Polan¢i¢. 2020. BPMN-L: A BPMN extension for modeling of process
landscapes. Computers in Industry 121 (2020), 103276.

Rachel A Pottinger and Philip A Bernstein. 2003. Merging models based on given
correspondences. In Proceedings 2003 VLDB Conference. Elsevier, 862-873.
Stergiani Spyrou, Panagiotis Bamidis, Kostas Pappas, and Nikos Maglaveras. 2005.
Extending UML activity diagrams for workflow modelling with clinical docu-
ments in regional health information systems. In Connecting Medical Informatics
and Bioinformatics: Proceedings of the 19th Medical Informatics Europe Conference
(MIE2005). Geneva, Switzerland. 1160-1165.

Xiaoya Sun, Liang Hu, and Xilong Che. 2019. Scientific Workflow: Modeling Meth-
ods and Management System. In Journal of Physics: Conference Series, Vol. 1168.
IOP Publishing, 032023.

Arthur HM Ter Hofstede, Wil MP Van der Aalst, Michael Adams, and Nick Russell.
2009. Modern Business Process Automation: YAWL and its support environment.
Springer Science & Business Media.

Wil MP Van Der Aalst and Arthur HM Ter Hofstede. 2005. YAWL: yet another
workflow language. Information systems 30, 4 (2005), 245-275.

Wattana Viriyasitavat, Li Da Xu, Gaurav Dhiman, Assadaporn Sapsomboon,
Vitara Pungpapong, and Zhuming Bi. 2021. Service workflow: State-of-the-Art
and future trends. IEEE Transactions on Services Computing (2021).

DA Wagner, M Chodas, M Elaasar, JS Jenkins, and N Rouquette. 2023. Ontological
Metamodeling and Analysis Using openCAESAR. In Handbook of Model-Based
Systems Engineering. Springer, 925-954.

[2]

[3]

—_
S

[13

[14]

[15

[16

(17

[18

=
2

[20]

[21

[22]

	MAIN MENU
	Search
	Print
	View Full Page
	View Page Width
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryList_V1
 qi2base

