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Abstract— Deploying AI services on battery-powered mo-
bility platforms such as autonomous vehicles, mobile robots,
and large scale IoT sensor networks requires determining the
most suitable execution environment for each workload across
the cloud, edge, and device computing options. Because every
placement option imposes different trade-offs among Accuracy,
Latency, and Energy efficiency (ALE), stakeholders face a
difficult, mission-critical decision that existing studies seldom
address in a holistic, mission-aware manner. To fill this gap, we
introduce the Mission-driven ALE (MALE) evaluation method.
MALE couples ALE metrics with explicit mission objectives
by allowing analysts to apply customizable weights to each
criterion. The evaluation results are aggregated and visualized
as heatmaps, helping transform a previously heuristic and
opaque placement decision (black-box) into a more transparent
and interpretable process (white-box). We examine the appli-
cability of MALE through three representative case studies:
Autonomous Vehicles, Real-Time Robotics, and IoT Sensor
Networks, each reflecting distinct ALE priorities. By supplying
a structured, mission-aware decision-support method, MALE
strengthens stakeholder confidence and accelerates the opti-
mization of AI service placement across the cloud–edge–device
continuum, offering a practical foundation for future validation
in real-world deployments.

I. INTRODUCTION

The rapid advancement of artificial intelligence (AI) tech-
nologies is transforming various sectors, particularly mobility
and robotics, by enabling sophisticated decision-making,
real-time responsiveness, and efficient resource management.
However, the deployment of AI-driven services in battery-
dependent mobility devices such as autonomous vehicles,
robots, and IoT sensor networks introduces unique chal-
lenges, as these systems must operate under strict con-
straints related to computational resources, latency, and
energy consumption. Existing studies have extensively ex-
plored computing paradigms individually, such as cloud, fog,
edge, and on-device computing, each offering distinct trade-
offs in terms of Accuracy, Latency, and Energy efficiency
(ALE) [1]–[3]. Although valuable, these studies typically
evaluate these criteria in isolation or partially combined,
without systematically addressing their integration with spe-
cific mission requirements [4]–[6]. This gap limits practi-
cal decision-making for stakeholders who require holistic
evaluations to align computational architectures with precise
operational goals.
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To address this critical need, we propose the Mission-
driven Accuracy, Latency, and Energy Efficiency (MALE)
evaluation method. MALE uniquely integrates mission-
specific objectives with comprehensive performance met-
rics to systematically assess and select optimal computing
paradigms tailored explicitly to mobility-centric AI services.
By providing a structured approach to evaluating computing
paradigms, including cloud, edge, and device-based archi-
tectures, MALE enables stakeholders to balance the critical
trade-offs among these criteria.

This paper contributes to existing literature by:

• Offering a comparative characterization of cloud, edge,
and on-device computing paradigms for AI mobility
services, grounded in ALE performance metrics.

• Introducing the MALE evaluation method using Likert-
scale scoring and weighted assessment tailored to AI
inference and training phases.

• Exploring the feasibility and practical relevance of the
proposed method through three representative case stud-
ies, each reflecting distinct ALE priorities in industrial
deployment scenarios.

Through this holistic approach, our method functions as
a structured decision support system that assists decision-
makers in exploring the decision space for deploying AI
mobility services in alignment with their operational goals.
As illustrated in Fig. 1, this approach replaces the opaque
black box with a transparent and interpretable white box,
enabling informed and mission-oriented decisions by using
intuitive heatmap visualizations. The remainder of this paper
is organized as follows: Section II reviews related works.
Section III describes the MALE evaluation method in detail.
Section IV presents industrial case studies demonstrating the
method’s applicability. Section V discusses key limitations,
and future works. Finally, Section VI concludes the paper.
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Fig. 1. The proposed method contributes by converting the decision space
into a white-box model, clarifying uncertain decision points.
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II. RELATED WORKS

Previous studies have explored cloud, fog, edge, and
on-device computing paradigms by evaluating various per-
formance metrics, such as computational capacity, latency,
and energy consumption [7]–[9]. For instance, Zhou et al.
[10] proposed a six-level rating system specifically designed
for edge intelligence, which provided structured insights
into distributed architectures. However, these studies mainly
focused on specific technical characteristics without fully
integrating mission-specific requirements. Several studies
have individually highlighted key criteria:

• Accuracy: Highlighted by studies such as [6], empha-
sizing the significance of accuracy for reliable decision-
making, particularly in safety-critical contexts.

• Latency: Examined extensively in real-time applications,
such as autonomous driving and surveillance, where la-
tency impacts system safety and performance [11], [12].

• Energy Efficiency: Investigated for its critical role in
enhancing operational longevity for battery-dependent mo-
bility devices, with several proposed methods to reduce
energy usage [4], [13].

To better understand the extent and limitations of existing
work, Table I provides a structured overview of recent stud-
ies, highlighting their coverage of cloud, edge, and device
computing environments along with their assessment of ALE
and mission-specific alignment. From this comparison, we
identify significant observations:

• Most studies address only one or two performance criteria
(ALE), but rarely all three simultaneously.

• Mission-specific considerations are rarely addressed or
only loosely integrated, highlighting a gap between general
performance metrics and their contextual application to
real-world deployment scenarios.

• Limited research exists on methods explicitly integrating
all three performance metrics (ALE) with clearly defined
mission objectives, especially within the context of AI
mobility services.

TABLE I
COMPARISON OF RESEARCH PAPERS ON MALE METRICS IN CLOUD,

EDGE, AND DEVICE COMPUTING ENVIRONMENTS

References Cloud Edge Device Mission Accuracy Latency Energy

Ko et al. [1] ✓ ✓ × × ✓ ✓ ✓

Lockhart et al.
[2] ✓ ✓ ✓ × × ✓ ×

Hu et al. [3] ✓ ✓ ✓ × ✓ ✓ ✓

Teerapittayanon
et al. [5] ✓ ✓ ✓ × ✓ ✓ ×

Kang et al. [14] ✓ × ✓ × × ✓ ✓

Han et al. [15] ✓ × ✓ × ✓ ✓ ✓

Eshratifar et al.
[16] ✓ × ✓ × × ✓ ✓

Li et al. [17] ✓ × ✓ × ✓ ✓ ×
Jeong et al. [18] × ✓ ✓ × × ✓ ✓

Proposed
Method ✓ ✓ ✓ ✓ ✓ ✓ ✓

Our research aims to address these gaps by proposing the
MALE evaluation method, which systematically integrates
mission-specific requirements with the critical metrics of
ALE. This approach provides a more holistic and structured
framework for evaluating and deploying AI services in
battery-dependent mobility contexts.

III. MALE EVALUATION METHOD

In this section, we introduce the MALE evaluation method
specifically designed for AI service deployment in battery-
dependent mobility devices. The method systematically in-
tegrates mission-specific objectives with three critical per-
formance metrics: Accuracy, Latency, and Energy Effi-
ciency. By enabling customizable weighting of ALE metrics
based on application-specific requirements, MALE provides
a structured framework for assessing and comparing diverse
computing paradigms. This allows stakeholders to visualize
trade-offs among competing performance goals and make
informed deployment decisions under practical constraints.
As AI services increasingly operate on resource-limited
platforms, such as mobile robots and embedded devices,
this method supports balanced optimization of performance,
responsiveness, and energy consumption tailored to each
deployment context.

A. Characterizing AI Mobility Services within the Edge-
Cloud Continuum

AI-based mobility services can be deployed across various
computing paradigms, each offering unique advantages and
trade-offs concerning ALE metrics. This structured char-
acterization provides a foundation for further discussion
and analysis within the MALE evaluation method, guiding
deployment decisions tailored explicitly to mission-specific
ALE requirements.

1) Defining mission based on ALE: The optimal con-
figuration of computing architectures significantly depends
on mission-specific priorities, specifically determined by the
relative importance assigned to ALE. Unlike the fixed weight
combinations utilized in previous analyses, our proposed
approach emphasizes a systematic method for defining ALE
weights tailored to diverse mission requirements.

In real-world deployments, each mission possesses distinct
operational constraints and performance goals, necessitating
flexible weight assignment for ALE metrics. For instance:
• Accuracy-critical missions (e.g., medical diagnostics, au-

tonomous vehicles): Accuracy receives primary emphasis
to guarantee precise outcomes, while Latency and Energy
Efficiency weights are assigned according to practical
resource availability and response-time tolerance.

• Latency-critical missions (e.g., real-time robotics): La-
tency assumes the highest weight to ensure prompt
decision-making, with secondary importance placed on
Accuracy or Energy Efficiency based on the context.

• Energy-sensitive missions (e.g., IoT sensors, battery-
powered devices): High priority is given to Energy Effi-
ciency, followed by either Latency or Accuracy, depending
on whether timely data or precise analytics is more critical.
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TABLE II
COMPARATIVE ANALYSIS OF COMPUTING PARADIGMS RELEVANT TO AI TRAINING AND INFERENCE [19]–[25]

Aspect Cloud Computing Fog Computing Edge Computing Multi-Access Edge
Computing (MEC) On-Device Computing

Definition

Centralized computing
with virtually unlimited
resources in large data
centers.

Distributed computing
via nearby intermediate
nodes extending cloud
services.

Local processing near
data sources to reduce
central dependency.

Computing at mobile
network base stations
close to users.

Processing directly on
user devices without
external reliance.

Computing
Capacity

Very High (virtually
unlimited scalable re-
sources).

Moderate to High (re-
gional nodes with mod-
erate computing power).

Moderate (local servers
capable of moderate
complexity AI).

Moderate to High
(powerful localized
resources at cell sites).

Very Low (limited by
device hardware and
power constraints).

Latency

High (network delay
due to distance from
users, tens to hundreds
of ms).

Moderate to Low (few
to tens of ms; shorter
distances reduce delay).

Very Low (local LAN
processing, few ms la-
tency).

Ultra-Low (1–10 ms,
optimized within mo-
bile network proxim-
ity).

Minimal (virtually zero
network delay, instanta-
neous response).

Device
Energy
Consumption

Low (offloads process-
ing to the cloud, min-
imizing device energy
use).

Lower–Moderate (local
nodes reduce transmis-
sion energy and process-
ing load).

Low (offloads compu-
tation nearby, reducing
device power usage).

Moderate (close pro-
cessing reduces latency
but increases communi-
cation overhead).

High (device performs
all computation, drain-
ing battery directly).

AI
Inference
Suitability

Excellent for complex
inference, allowing
very large models.

Good for localized IoT
inference, moderate-
sized models.

Highly suitable for
real-time inference
using moderately
complex models.

Highly suitable for mo-
bile low-latency infer-
ence tasks.

Limited to lightweight
inference tasks due to
resource constraints.

AI Training
Suitability

Outstanding (ideal for
large-scale model train-
ing and complex deep
learning).

Limited (small-scale or
incremental updates, no
heavy training).

Moderate (small-scale
model training or local
fine-tuning).

Moderate (localized
federated learning,
small-scale training).

Very Poor (only min-
imal training feasible,
e.g., federated learning
or personalization).

Our method provides decision-makers with an adaptable
weighting method, allowing them to define ALE priorities
explicitly aligned with their mission contexts. By systemat-
ically adjusting these weights and evaluating corresponding
heatmaps, stakeholders can comprehensively assess various
architectural combinations and select the suitable solution for
their specific operational needs. This significantly extends the
flexibility and applicability of performance evaluation com-
pared to the black-box method, highlighting the importance
of customizable ALE prioritization.

2) Classifying the service instances in the continuum:
To support the classification of service instances within the
edge–cloud continuum, we provide a structured summary
and comparison of key attributes across widely-adopted
computing paradigms, as shown in Table II. This comparative
analysis outlines essential characteristics such as computing
capacity, latency, proximity to users, device energy consump-
tion, and security considerations. It also relates these charac-
teristics to typical use cases in AI mobility services, thereby
helping analysts make more informed architectural decisions.
By mapping AI mobility services to this classification space,
stakeholders can determine suitable deployment strategies for
the specific ALE metrics relevant to the missions.

B. MALE Evaluation of the AI Mobility Service in Edge-
Cloud Continuum

1) Setting MALE Score Criteria: This subsection de-
scribes the criteria used to establish MALE scores clearly
and systematically. The evaluation criteria are based on ALE
metrics selected to represent critical performance dimensions
for AI mobility services within edge-cloud environments:
• Accuracy: The achievable model accuracy under aver-

age computational capabilities across different computing
paradigms for identical tasks and constraints.

• Latency: Response time experienced at the device level.
• Energy Efficiency: Energy consumption of the device

during computational activities.
Each computing paradigm is scored from 1 (poor) to 5 (ex-

cellent) for the training and inference phases, based on exten-
sive literature reviews and empirical benchmarks, as shown
in Fig. 2. Seven radar graphs represent all possible combina-
tions of Cloud, Edge, and Device deployments—three single,
three dual, and one full integration. Tables II and III detail the
rationale behind each Likert-scale score assignment. These
rationales ensure transparency, accuracy, and reproducibility,
and are derived through comprehensive comparative analyses
of previous studies [19]–[23].

2) Calculating MALE Score: This subsection emphasizes
the quantitative calculation of the MALE score, which
integrates predefined criteria with mission-specific weights
to facilitate interpretable, white-box visualization through
heatmap graphs. The total MALE score for each architecture
is calculated by assigning user-defined numerical weights
to each of the ALE criteria. The generalized formula for
computing the MALE score is defined as follows:

MALE Score =
∑
c∈C

wc · (ctrain + cinfer) (1)

where C = {Accuracy, Latency, Energy},
∑

c∈C wc = 1,
and ctrain, cinfer ∈ {1, . . . , 5} for all c ∈ C.

These weights allow analysts to explicitly prioritize the
ALE criteria based on the mission-specific objectives. Ad-
justing these weights provides the flexibility to conduct sen-
sitivity analyses and iterative recalculations, resulting in mul-
tiple white-box heatmap visualizations. These heatmaps ef-
fectively illustrate trade-offs across ALE dimensions, thereby
enabling informed and transparent decision-making regard-
ing architecture selection for AI mobility services. In sum-
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TABLE III
RATIONALE FOR LIKERT-SCALE SCORES (1–5) OF COMPUTING PARADIGMS [19]–[26]

Criterion Paradigm Score Rationale

Accuracy
(Training)

Cloud 5 Cloud computing supports training of highly complex models with large datasets due to abundant computing and
storage resources.

Edge 4 Edge servers offer moderate compute capabilities for training, allowing for some model complexity but not to the
scale of cloud environments.

On-Device 1 On-device training is extremely constrained due to low compute power and limited memory, only supporting
lightweight models with reduced accuracy.

Hybrid
(Fog/MEC) 2–4 Fog and MEC nodes can participate in distributed or federated learning, reaching near-cloud accuracy depending

on aggregation strategy.

Accuracy
(Inference)

Cloud 5 Cloud-hosted models can be full-scale and state-of-the-art, enabling the highest possible inference accuracy.

Edge 4 Edge inference often runs moderately complex models that trade off some accuracy for latency and energy savings.

On-Device 1 On-device models are typically quantized or pruned to fit local hardware constraints, resulting in modestly reduced
accuracy.

Hybrid
(Fog/MEC) 2–4 Inference can be partitioned between fog and cloud, achieving both high speed and cloud-level accuracy via model

splitting and layered refinement.

Latency
(Training)

Cloud 1 High latency due to remote location and network delays, even though computation itself is fast in the cloud.

Edge 3 Edge training reduces data upload time but operates under lower compute power, leading to moderate training
latency.

On-Device 5 Training happens locally without communication delays; however, actual training time may still be long.

Hybrid
(Fog/MEC) 2–4 Latency varies depending on node proximity and workload distribution, ranging from moderate (fog) to low

(MEC).

Latency
(Inference)

Cloud 1 Inference over the cloud involves round-trip network latency and potential congestion, often unacceptable for
real-time requirements.

Edge 3 Edge inference reduces latency but may still suffer from moderate delay due to network stack and service
orchestration.

On-Device 5 On-device inference achieves near-instant responses with no network overhead, ideal for ultra-low-latency needs.

Hybrid
(Fog/MEC) 2–4 Latency ranges from moderate (fog) to ultra-low (MEC), depending on deployment specifics and workload

partitioning.

Energy
Efficiency
(Training)

Cloud 5 Training is offloaded, so device energy is preserved, though data transmission consumes some energy.

Edge 5 Short-range transmission and remote computation ensure minimal device-side energy consumption.

On-Device 1 Training consumes a large amount of energy on the device, which may overheat or rapidly deplete battery.

Hybrid
(Fog/MEC) 2–5 Depending on proximity and workload division, energy usage ranges from moderate (fog) to highly efficient

(MEC).

Energy
Efficiency
(Inference)

Cloud 5 Cloud inference avoids computation on the device, saving energy, but incurs some cost from wide-area
transmission.

Edge 5 Nearby edge inference avoids computation on the device and minimizes transmission distance, preserving battery.

On-Device 1 Inference computation happens locally, using device resources and potentially draining battery during continuous
operation.

Hybrid
(Fog/MEC) 2–5 Energy usage varies by configuration: fog scenarios may require moderate energy, while MEC provides efficient

edge processing.

mary, the MALE evaluation method significantly enhances
architectural selection by systematically quantifying key per-
formance trade-offs, thus providing a robust, transparent, and
mission-aligned framework to optimize the deployment of AI
mobility services within cloud-edge-device environments.

IV. CASE STUDIES

A. Three Industrial Cases Under Evaluation
This section provides a detailed analysis of ALE weight

assignments informed by real-world implementations, tech-
nological reports, and industry literature. While the weights
are not derived directly from raw field data, they are
grounded in patterns and priorities consistently observed
across documented use cases and expert sources.

1) Autonomous Vehicles (Accuracy Prioritized): Au-
tonomous vehicles, such as Tesla Autopilot, require high
accuracy due to stringent safety and reliability constraints

[27]. High accuracy minimizes misclassification risks that
directly contribute to accidents. Latency is critically impor-
tant to ensure timely responses (milliseconds scale). Energy
efficiency remains relevant but is typically secondary, as
onboard power sources are sufficiently robust.

2) Real-Time Robotics (Latency Prioritized): Latency
minimization is paramount in real-time robotics applications,
exemplified by Boston Dynamics’ Spot, due to immediate
feedback requirements for precise control [28]. Literature
and product documentation clearly indicate latency as the
highest priority. Energy efficiency is also significant, partic-
ularly due to battery-operated constraints. Accuracy, while
still essential, can be managed to acceptable levels without
compromising overall real-time functionality.

3) IoT Sensor Networks (Energy Efficiency Prioritized):
In IoT sensor networks such as LoRaWAN and Amazon
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Fig. 2. Radar charts visualizing Likert-scale (1–5) performance scores across six evaluation criteria for each computing paradigm.

Sidewalk, energy efficiency is the concern due to limited
battery power and long-term deployment requirements [29],
[30]. Industry use-cases demonstrate greater tolerance for
latency than inaccuracies or data reliability issues. Energy
efficiency is therefore prioritized, with accuracy maintaining
importance over latency to ensure data integrity and relia-
bility. In summary, these scenarios illustrate distinct ALE
priority trade-offs, providing practical insights into system
design considerations for varying application contexts.

B. Evaluation Results
This section evaluates the computing paradigm selection

method by applying six distinct ALE weight configurations,
each representing distinct prioritizations of ALE. These con-
figurations are derived from industrial requirements, product
implementations, and additional hypothetical scenarios for
broader coverage. Fig. 3 shows six corresponding heatmaps,
each illustrating the total weighted MALE score (computed
using Equation 1) across various architectural combinations.
Among these six configurations, three closely match the
industrial scenarios detailed in Section IV. These three
(Autonomous Vehicles, Real-Time Robotics, IoT Sensor
Networks) are discussed in detail because they exemplify
the most prominent, validated use cases:

• Autonomous Vehicles: Accuracy Prioritized
– Weights: Accuracy = 0.6, Latency = 0.3, Energy = 0.1
– Autonomous systems such as Tesla Autopilot require

highly accurate perception for safety, while also de-
manding rapid inference for real-time responsiveness
[31]. Fig. 3(a) confirms that high-accuracy and low-
latency-capable architectures such as Cloud and Edge
platforms yield the highest total MALE scores under
this revised weighting. However, since Cloud-Device
configurations also achieve competitive scores, this sug-
gests that selecting the absolute top-scoring option is
not always necessary—especially in emergency scenar-
ios where immediate inference is crucial, performing

inference directly on the Device may offer practical
advantages over relying on Cloud or Edge computation.

• Real-Time Robotics: Latency Prioritized
– Weights: Accuracy = 0.1, Latency = 0.7, Energy = 0.2
– Real-time robotic systems, such as Boston Dynamics’

Spot, require ultra-low latency to ensure stable control
and safe motion execution. For instance, Spot is de-
signed to accept and execute control commands within a
300 ms time span; exceeding this latency can noticeably
affect performance [32].

– Fig. 3(c) indicates that Device, Edge Edge-Device,
and Cloud-Device platforms perform best under these
latency-focused requirements.

• IoT Sensor Networks: Energy Prioritized
– Weights: Accuracy = 0.2, Latency = 0.1, Energy = 0.7
– In long-term IoT deployments such as LoRaWAN and

Amazon Sidewalk, power consumption is the primary
constraint due to limited battery resources [29], [33].
Fig. 3(e) demonstrates that Edge and Cloud-Edge
architectures provide optimal energy efficiency while
preserving acceptable accuracy and latency.

The additional three weight configurations (depicted in
Fig. 3(b), (d), and (f)) explore further hypothetical scenarios
to broaden the design space analysis. While not elaborated
upon here, they provide supplementary insights into potential
trade-offs under different priority distributions. These six
heatmaps confirm that the proposed method can flexibly
align architectural decisions with a variety of application
constraints by integrating interpretable, priority-driven eval-
uations. The three highlighted examples illustrate how ALE-
related domains can benefit from architectural configurations
to optimize critical performance metrics.

V. DISCUSSION

A. Threats to Validity
Several factors may influence the validity of our study.

Firstly, the subjective assignment of scores to accuracy,
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Fig. 3. Heatmap of total weighted scores for various architectural configurations under different mission-specific weight settings.

latency, and energy efficiency metrics could introduce bi-
ases. However, our study establishes a baseline reflecting
typical scenarios by referencing established literature and
industry-standard benchmarks. [19]–[25] This baseline is
explicitly designed to serve as a foundational reference,
enabling stakeholders to transparently adjust and customize
the scoring criteria according to their specific application
needs or priorities. To further mitigate potential biases, we
provided detailed scoring methods.

Secondly, the selected case studies—autonomous vehicles,
real-time robotics, and IoT sensor networks—were primarily
chosen to demonstrate the applicability of our proposed
method. While the validity of individual MALE analysis
results for each case was not strictly within our study’s scope,
we have attempted to ensure accuracy and relevance by con-
sulting multiple sources from existing literature and industry
information [27]–[31], [33]. Nevertheless, generalizing our
findings to other domains may require additional scenario-
specific considerations and validation efforts. Future studies
could address this by extending evaluations to a broader
range of applications and industrial contexts.

Lastly, our evaluation method assumes static mission ob-
jectives within each scenario. Real-world operations often
involve dynamic and evolving mission requirements, which
could necessitate continuous recalibration of ALE priorities.
Future work should incorporate adaptive mechanisms to
dynamically adjust criteria weights in response to real-time
operational changes.

B. Value of Our Method and Future Works
The MALE evaluation method presented in this study sig-

nificantly advances current practices by integrating mission-

specific objectives explicitly with ALE metrics. Unlike pre-
vious studies addressing isolated performance criteria, our
comprehensive approach enables decision-makers to system-
atically assess computing paradigms tailored to their unique
operational needs.

The practical case studies demonstrate the applicability
and effectiveness of our method across diverse industrial
contexts: Autonomous Vehicles, Real-Time Robotics, IoT
Sensor Networks, providing valuable insights for deploying
AI services in battery-dependent mobility environments. This
structured and adaptable method offers stakeholders a robust
tool for optimizing their deployment strategies, balancing
mission-critical priorities effectively.

In future work, we plan to apply the proposed method to
real-world deployment environments. By evaluating its effec-
tiveness in practical AI mobility systems, we aim to assess
its potential as a foundational tool for optimizing deployment
strategies across the cloud–edge–device continuum.

VI. CONCLUSION

We proposed the MALE (Mission-driven Accuracy, La-
tency, and Energy Efficiency) evaluation method to system-
atically guide the deployment of AI services for battery-
dependent mobility devices across the cloud-edge-device
continuum. Recognizing the limitations of existing works
that evaluate performance metrics such as ALE in isolation
or without explicit mission context, our approach introduces
a structured and adaptable framework that aligns computing
paradigm selection with mission-specific objectives.

This study’s core contribution is the transformation of
architectural decision-making from a heuristic and black-
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box process into an interpretable and white-box method.
By integrating customizable ALE priorities and visualizing
trade-offs through heatmaps, the MALE method enables
stakeholders to make informed, transparent, and mission-
aligned deployment decisions across cloud, edge, and de-
vice computing paradigms. Through three representative
case studies—Autonomous Vehicles, Real-Time Robotics,
and IoT Sensor Networks—we examined how the proposed
method can reflect diverse operational priorities. These ex-
amples indicate the potential of the MALE method to assist
in balancing performance trade-offs in mission-dependent
deployments. In future work, we plan to apply the proposed
method to real-world deployment environments. By evalu-
ating its effectiveness in practical AI mobility systems, we
aim to assess its potential as a foundational tool for opti-
mizing deployment strategies across the cloud–edge–device
continuum.
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