o A} 8} 9] = 2
Ph.D. Dissertation

T AfolH] Ba] Al AE BE AZS 9T
Q) SH5S ALES HlojE] Ut 2l Wl A4

Data-Driven Environment Model Generation Using Imitation
Learning For Efficient Cyber-Physical System Goal Verification

2023

e,

£ = (1B #F 1% Shin, Yong-Jun)

e X

Korea Advanced Institute of Science and Technology



ald
HJ
oF

or

al

ol X°

oy "

o

oy %
111_| ol

2023



9] =Re AT AR o 2
S92 HALSI Ao HALE VSRS

20229 1249 1<

v
(§
CPVERI @ﬁi

/1\:]!/\]-—?’]% s _ﬂ‘@o ‘{.&"“
CRE R

CREEE RS
A 199,

—

-,
0.
o



Data-Driven Environment Model Generation Using
Imitation Learning For Efficient Cyber-Physical
System Goal Verification

Yong-Jun Shin

Advisor: Doo-Hwan Bae

A dissertation submitted to the faculty of
Korea Advanced Institute of Science and Technology in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

Daejeon, Korea
December 1, 2022

Approved by

NN,

Doo-Hwan Bae
Professor of School of Computing

The study was conducted in accordance with Code of Research Ethics?.

I Declaration of Ethical Conduct in Research: I, as a graduate student of Korea Advanced Institute of Science and
Technology, hereby declare that I have not committed any act that may damage the credibility of my research. This
includes, but is not limited to, falsification, thesis written by someone else, distortion of research findings, and plagiarism.

I confirm that my thesis contains honest conclusions based on my own careful research under the guidance of my advisor.



DCS MEZ. E240 AO|H 22| A|IAH S H AS3 2t 2 53 A2
of O|Og] 7|8t =2t F 2 MM AHASHE 20233, 100+v &, A =4
B2 (& =2)

Yong-Jun Shin. Data-Driven Environment Model Generation Using Imitation
Learning For Efficient Cyber-Physical System Goal Verification. School of
Computing . 2023. 100+4v pages. Advisor: Doo-Hwan Bae. (Text in

English)

2 =2
as =5
AtolH Z2] AAR2 S PSSHL PES AAce 2ZEQ Ol JEEHE Sdll 294 &4 A=
2oz 49 gt dAYolE Aol &3] A2He] 9= 23 HAE 218 #4ste] 24 oY
ADEe] AEER}T Folil RRHE o= Ak B4T 5 AsA 5T & Aok Iy FAHeR
woluet 452 fldl 2E 2% HAES tre] WhEste 2 2 vl = AlEdelAd 7 HE2
AtolH &3] AR S ATl et BE 23 HAES] HlES EoF &4 titteltt. 1=y
olE fIsiAE AtelH =] AL"EM FEagols A &8s tAE & e ARt 7MY g 2ol
asty, I 87 Bdg pAlos Bes A2 of Yo

o =E2 2] BE ¥ HAE 2O0A 7MY 8 Rde A5 o2 A5 2L H olE
7IRE 719 Attt o] 712 AA| ¢4 9] AsS R¥ste &4 Rde B ohge ARl A4
g FAHeR B w2 1) &7 B tiet AlAA oA 2EAR] XA, 2) Afo]H Z2] AlAHe)
ZH 450 A9 mHdgact 28 Rl B Y =A A9, 3) B shEs o837 HlolH 71 g4
2 A 71, a=AL 4) A 9 ALEe] 28 HS Aol et Ao goh ) AHAE THs
dolHE Attt A7 A3 2 7ol Aol 28] AlA] 8 dFs 96 et 7HE 2 RdS
4% UE 27 HAE 27 HolHaRE AF AT 5 e Btk o224 Atold =2 A2H
ADEo] dIZYol= 2] @7 tigt #|4jo] Rttt Fojt 7MY 87 REE AFoR dE
AL, FAEEHE Algeolddol 7|Hts] medos 45T < 9l
AT Aol 28] ALH, 28 AT, 87 BdY, Bd A4, B ok

Abstract
Cyber-Physical Systems (CPS) continuously interact with their physical environment through software
controllers that observe the environment and determine actions. Engineers can verify to what extent
the software controller under analysis can achieve given goals by analyzing its Field Operational Test
(FOT) logs. However, repeating many FOTs to obtain statistically significant results is expensive in
practice. Simulation-based verification is an efficient alternative for reducing the FOT cost for CPS
goal verification. However, it requires an accurate virtual environment model that can replace the real
environment interacting with the CPS, and it is challenging to craft the environment model manually.
This dissertation proposes a novel data-driven approach that automatically generates the virtual
environment model from a small amount of FOT logs. It generates an environment model that mimics
the behavior of the real environment using Imitation Learning (IL). Specifically, this dissertation provides
1) a systematic and comprehensive survey on environment modeling, 2) a formal framework of CPS
goal verification and a formal problem definition of environment model generation, 3) a data-driven
environment model generation approach using IL, and 4) an empirical evaluation based on case studies
of an autonomous driving system goal verification and reusable datasets. The evaluation results show

that the approach can generate accurate virtual environment models for CPS goal verification with small



FOT log data. Therefore, CPS software engineers can automatically obtain accurate virtual environment

models and efficiently verify the controller based on the simulation.

Keywords Cyber-Physical System, Goal Verification, Environment Modeling, Model Generation, Imi-

tation Learning



Contents

Contents . . . . . . . 0 i i e e e e e e e e e e e e e e
List of Tables . . . . . .« . . @ i i i i e e e e e e e e e e e e e e e e
List of Figures . . . . . . . . 0 0 i i i i it e e e e e e e e e e
Chapter 1. Introduction
1.1 Introduction to CPS Goal Verification . . .. ... ........
1.2 Challenges in the Environment Modeling for Simulation-Based
CPS Goal Verification . . . . . .. ... ... ... ... ...,
1.3 Thesis Statement . . . . . . . ... ... ... 0 0.
1.4 Scope and Contributions of the Thesis . . . . ... ... .....
1.5 Thesis Organization . ... ... ... ... ...,
Chapter 2. Literature Review on Environment Modeling
2.1 Introduction. . . . . .. . . ... 0 i e e e e e
2.2 Cyber-Physical Systems and Related System Types . . . .. ..
2.3 Systematic Review Protocol on Environment Modeling . . . . .
2.4 Review Result 1: Concepts of the Environment . ... ... ..
2.4.1 Definitions of the Environment . . . . .. ... ... ...
2.4.2 Characteristics of the Environment . . ... .. ... ..
2.4.3 Sources of the Environmental Uncertainty ... ... ..
2.5 Review Result 2: Models of the Environment . . . . . . ... ..
2.5.1 Environment Modeling Methods . . ... ... ... ...
2.5.2 Application of the Environment Models . . . . . . .. ..
2.5.3 Expressiveness of the Environment Models . . . . . . ..
2.6 Comparison of Related Works and the Thesis. . . . .. ... ..
2.7 Summary . .. ... i e e e e e e e e
Chapter 3. Formal Framework of CPS Goal Verification
3.1 Imtroduction . . . . . . . . . . . @ @ i it e e e e e
3.2 CPS-Environment Interaction Model . . . . . ... ... .....
3.3 Formal Framework of CPS Goal Verification Process . ... ..
3.4 Problem Definition of the Environment Modeling . ... .. ..
3.4.1 Original Definition . . ... ... ... ...........
3.4.2 Extended Definition . . . . . ... ... ... ... ... ..
3.5 Summary ... .. L e e e e e e e e e e e e e e e e e e e e

iv

=W N =

co ot ot

12
12
13
16
19
19
22
23
25
27



Chapter 4. Data-Driven Environment Model Generation
4.1 Introduction . . . . . . . . . . . i i i i e e e e e e e e
4.2 Motivating Example . . . . . ... . ... . 0 00000,
4.3 Background: Imitation Learning . . . . . . .. ... ... .....
4.3.1 Behavior Cloning . . . ... .. ... ... .........
4.3.2 Generative Adversarial Imitation Learning . . . . . . ..
4.4 Environment Imitation Overview . .. .. ... ..........
4.5 Environment Imitation Process . ... ... ... .........
4.5.1 Stage 1: Collecting Seed FOT Logs . ... ........

4.5.2 Stage 2: Defining Environment Model Structures . . . .
4.5.3 Stage 3: Training Environment Models Using Imitation

Learning . . . . . . . . . . . i e

4.5.4 Stage 4: Selecting the Best Environment Model . . . . .
4.5.5 Stage 5: Verifying CPS Goals . . . ... ... ... ....

4.6 SUIMMATY .+ + ¢ v v v v v vt v et e e e e e e e e e e e e e e e e

Chapter 5. Empirical Evaluation

5.1 Introduction . . . . .. ... ... i e
5.2 Research Questions . . ... .. ... ... .. ...,
5.3 Experiment Environment: Platooning LEGOs . ... ... ...
5.3.1 Introduction to Open CPS Experiment Environment . .
5.3.2 Platooning LEGOs Overview . ... ............
5.3.3 Implementation Manuals . . . . ... ... .........
5.3.4 Sample Experiment of Platooning LEGOs . ... .. ..

5.4 Experimental Data Collection . ... ... ... ..........
5.4.1 Introduction to Open CPS FOT Dataset ... ... ...
5.4.2 Background of CPS Controller Feedback Loop Design .
5.4.3 CPS FOT Data Collection Scenario ... ... ......
5.4.4 Data Collection Strategy . . . . . .. ... ... ......
5.4.5 FOT Data Analysis . . . ... ... ... .. ........
5.4.6 Possible Applications of the Open FOT Dataset . . . . .

5.5 Experiment Settings for Environment Model Generation . . . .
5.5.1 Overall Experimental Process . . . . .. ... .......
5.5.2 CPS Goal Verification Accuracy Metric . . . . . ... ..
5.5.3 Comparison Baselines. . . . . .. ... ...........
5.5.4 Environment Imitation Settings. . . ... ... ... ...

5.6 Evaluation Results . . . . .. ... ... ... ... .00

5.6.1 RQ1: User Parameter Analysis . . . ... ... ......

ii

36
36
36
37
37
38
38
39
39
40

42
47
48
49



5.6.2 RQ2: Verification Accuracy for Seen CPS Controllers
5.6.3 RQ3: Model Generation Efficiency . . .. ... ... ...
5.6.4 RQ4: Verification Accuracy for Unseen CPS Controllers
5.6.5 RQ5: Seed Log Collection Strategy . .. ... ......
5.7 Threats to Validity . . . . . ... ... ... .. 0.,

5.8 Summary

oooooooooooooooooooooooooooooooo

Chapter 6. Conclusion

6.1 Summary of Achievements . . . ... ... ... ..........

6.2 Discussion

Bibliography

Acknowledgments in Korean

Curriculum Vitae

iii

76
78
80
81
84
85

86
86
86

88

97

98



2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

5.1
5.2
5.3
5.4
5.5
5.6
5.7

5.8

List of Tables

Research questions of SLR. . . . . . . . . . . . . e 11
Automated search engines . . . . . . ... 11
Manual search venues . . . . . . . . . . . e e e e 12
Inclusion and exclusion criteria . . . . . . . . .. Lo 13
Data extraction items . . . . . . . . . . L e 13
Definitions of environment . . . . . . . . . ... L e e 14
Characteristics of the environment of SAS and their expressions . . . . . . . ... .. ... 15
Sources of environmental uncertainty . . . . . . ... ... Lo 17
Models of the environment of SAS . . . . . . . . . ... 20
Limitations of the related works . . . . . . . . . .. . o oL 27
Robot vehicle goals of the Platooning LEGOs . . . . . . . . . . . . ... ... ...... 53
Activities of vehicles in Platooning LEGOs . . . . ... ... .o 54
Environmental uncertainties addressed by the Platooning LEGOs . . . . . . . . ... ... 56
Deterministic environment model structure . . . . . ... ... L Lo 72
Nondeterministic environment model structure . . . . . . . . ... ... L. 72
Hyperparameter values for IL algorithms . . . . . . . . ... ... . 0L, 73

Confidence level (p-value) of effect of the ENVI parameters on the imitation score and
rank of the influence. p-value is highlighted in bold when it is smaller than 0.05. . . . . . 75
Comparison of verification errors of ENVI and baselines. The lowest error for each case

study and verification goal is highlighted in bold. . . . . .. . ... ... ... .. .... 78

iv



1.1
1.2

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
5.3
5.4
5.5

List of Figures

Compounding error problem [1] . . . . . . . ... L 2
Thesis SCOPE . . .« . o o o e 3
An example of the CPS: Autonomous vehicle . . . .. ... ... ... ... ........ 5
Controllers Constituting Autonomous Vehicle . . . . ... .. ... ... ... ... 6
Interaction between the CPS controller and the environment . . . . ... ... ... ... 6
Conceptual model of an SAS [2] . . . . . . . . .. L 7
Relationships of CPS, SAS, and SoS . . . . . . . . . . . . . .. . ... e 8
Overview of the review protocol . . . . . . . . . .. . 10
Environment characteristics . . . . . . . . .. Lo 16
Number of mentions of characteristics of an SAS environment . . . . . .. ... ... ... 18
Environmental uncertainty sources . . . . . . . ... Lo s 18
Frequency of addressing each source of environmental uncertainty . . . . . . . . .. .. .. 19
Four major perspectives of environment modeling . . . . . . .. ... ... ... ...... 21
Modeling efforts of the environment models . . . . . . ... .. ... .. ... ....... 22
Application of the environment models . . . . . . . . ... ... 22
Representations of the SAS environment characteristics in the models . . . . . .. .. .. 24
Environment model for CPS goal verification . . . . . ... ... ... ... ... .. 25
Closed loop interaction between CPS and environment . . . . . . . ... .. ... ..... 29
CPS-ENV interaction model . . . . . . . . . .. .. L 30
An example of CPS goal verification process . . . . . . .. .. ... oL 31
Formal framework of CPS goal verification process . . . . . . ... ... .. ... ..... 32
Formal problem definition of the environment model generation . . . . . . ... ... ... 32
An example of configurable CPS controller . . . . . . . .. .. ... ... .. ... ... 34
ENVI: Overall process and parameters . . . . . . . . . ... ... ... ... ... 39
CPSFOT log example . . . . . . . .. o e 39
Deterministic environment model structure . . . . .. .. ... 0 Lo 40
Nondeterministic environment model structure . . . . . . .. ... ... o0 L. 41
Mapping of the FOT log data and the environment model structure . . . ... .. .. .. 42
ENVI BC algorithm summary . . . . . . . .. ... 43
The discriminator structure for GAIL . . . . . . . . . ... o 44
ENVI GAIL algorithm summary . . . . . . . ... . et 46
ENVI BCGAIL algorithm summary . . . . . ... .. ... .. 47
Overview of Platooning LEGOSs . . . . . . . . . . . i it e e e 52
A LEGO Mindstorms EV3 vehicle . . . . . . . . . ... .. ... 55
Road environment . . . . . ... Lo 57
A physical implementation of Platooning LEGOs . . . . . . .. ... ... ... .... 58
Sample experiment results . . . . ... L. 60



5.6
5.7
5.8
5.9
5.10
5.11
5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

A feedback loop from the control perspective [3] . . . . . .. ... ... 0L 61

An autonomous robot vehicle case study design . . . . .. ... oL 62
Autonomous vehicle controllers . . . . . ... .. L L 63
Autonomous vehicle FOT configuration space . . . . . . . . . .. ... ... ... ..... 64
Implemented robot vehicles and the FOT environment . . . . . .. ... ... ... .... 64
Autonomous vehicle driving trace visualization . . . . . ... ... .. 0oL 65

Distribution of achievement of two autonomous driving goals obtained through repetitive
FOTs . . . o e 66
Changes in the achievement of autonomous driving goals affected by configurations (one
independent variable) . . . ... Lo L 67
Changes in the achievement of autonomous driving goals affected by configurations (three
independent variables) . . . . . ... 68
Imitation scores of all possible configurations of ENVI. The asterisk (*) highlights a set
of optimal configurations with no statistically significant differences. . . . . . .. ... .. 74
Comparison of imitation scores achieved by different ENVI parameter settings. The as-

terisk (*) highlights parameter settings that are statistically significantly better than the

others. . . . . . L L 75
Comparison of FOT-based and simulation-based passenger comfort and safety verification
TeSUILS . . oL L e 7

Comparison of ENVI and baselines in terms of imitation score of seen controller verification 79
Comparison of training data efficiency of ENVI and baselines . . . . . ... ... ... .. 80
Comparison of ENVI and baselines in terms of imitation score of unseen controller verification 81
Comparison of ENVI imitation score according to number of CPS controllers used for seed
log collection . . . . . . . . . e 82
Comparison of ENVTI imitation score according to the distance between seen configurations
and an unseen configuration under verification . . . . ... ... oL 0oL 83
Comparison of ENVI imitation score of interpolation verification and extrapolation veri-
flcation . . . . . . e e e 84

vi



Chapter 1. Introduction

1.1 Introduction to CPS Goal Verification

Cyber-Physical Systems (CPS) utilize both physical and software components deeply intertwined to
continuously collect, analyze, and control physical actuators at runtime [4]. CPS has been increasingly
studied for many applications, such as autonomous vehicles [5, 6], robots [7, 8], smart factories [9, 10], and
medical devices [11, 12]. When developing CPS, software engineers participate in implementing CPS’s
decision-making mechanism. The decision-making mechanism is the intelligence of selecting appropriate
actions to achieve CPS’s goals based on the current state of CPS recognized through CPS sensors.

One of the essential problems in CPS development is to verify to what extent the CPS under
development can achieve its goals. To answer this, an engineer could deploy a CPS (e.g., an autonomous
vehicle) into its operational environment (e.g., a highway road) and verify the CPS’s goal achievement
(e.g., lane-keeping) using the logs collected from the Field Operational Tests (FOTs). To perform FOT,
the engineer must build a physical experimental environment in which CPS can be safely tested and
design a test scenario to be performed within that environment. The engineer then runs the planned
test scenario repeatedly, collecting a large number of FOT logs.

However, conducting FOTs is expensive, time-consuming, and even dangerous, especially when
hundreds of repeats are required to achieve a certain level of statistical significance in the verification
results. Therefore, an alternative is a simulation-based approach where the software controller of the
CPS is simulated with a virtual environment model. In the simulation, the decision-making mechanism
of CPS or the software controller of CPS runs in the virtual environment. This virtual environment
or environment model replaces the environment of FOT. Therefore, CPS can be tested in a virtual
environment rather than physically, making it cheap and safe to perform sufficient runs necessary for
statistical goal verification.

This dissertation proposes to verify CPS’s goals based on simulations to reduce the cost of FOT-
based CPS goal verification. Specifically, it deals with the generation of the virtual environment model

required for CPS simulation.

1.2 Challenges in the Environment Modeling for Simulation-

Based CPS Goal Verification

Though the simulation-based CPS goal verification can reduce the cost and risk of the FOT-based
CPS goal verification, it requires a highly crafted virtual environment model based on deep domain
knowledge. Furthermore, it may not be possible if a high-fidelity simulator for the problem domain does
not exist. It prevents the simulation-based approach from being better used in practice. Specifically, the
following challenges exist in manual environment modeling.

First, accurately modeling the physical environment of CPS is complex. The environment model
used in CPS simulations is the state transition mechanism of the environment sensed by CPS and affected
by the CPS actions. However, the number of environmental states that CPS can observe is enormous.

The number is proportional to the number of sensors in the CPS and the range of environmental state



values each sensor can recognize. It is also affected by the number of actions that CPS can choose. The
number becomes infinite if the environmental state and the CPS actions contain continuous variables.
As CPS becomes more complex, environmental models also become more complex, making it difficult

for engineers to develop them manually.

= real trajectory
.= ‘model trajectory

Figure 1.1: Compounding error problem [1]

Second, if a small error exists in the generated environment model, the error in the model may
accumulate while simulating the model. The phenomenon in which small errors accumulate while sim-
ulating the model for a long time is called a compounding error problem. Figure 1.1 visualizes the
compounding error. The black line is the real CPS trajectory, and the red line is the simulation trajec-
tory. At the beginning of the simulation, reality and simulation were almost similar, but the simulation
error accumulated over time. The model cannot reduce the accumulated error again. Therefore, it is
difficult to make complex environmental models accurately and prevent compounding error problems in
the simulation.

Finally, environment modeling requires a significant level of domain knowledge and effort. To accu-
rately model the state transition of the environment interacting with CPS, it is necessary to accurately
understand the physical laws in the environment of interest. It requires knowledge at the domain expert
level. Also, even if a domain expert models the environment, it takes considerable time and cost. When
environment modeling is performed to replace the FOT of CPS with simulation, the cost of generating
the environment model should be less than the FOT cost to maximize the effectiveness of the simulation.
However, if an expert performs environmental modeling manually, it is difficult to reduce the knowledge,

cost, and time spent on the modeling.

1.3 Thesis Statement

This dissertation proposes a data-driven environment model generation for efficient CPS goal verifi-
cation. We suggest using CPS simulation instead of CPS FOT by generating an environment model from
data to reduce the goal verification cost. The environment model generation approach does not require
significant domain knowledge to solve the challenges of manual environment modeling. The key idea

behind the model generation is to leverage imitation learning for training a model that imitates the in-



teractions between the CPS controller and its real environment as recorded in (possibly very small) FOT
logs. We then statistically verify the goal achievement of the CPS by simulating it with the generated
model.

Therefore, the thesis statement is:

By proposing a data-driven environment model generation approach, it is possible to make SW
engineers automatically model the real environment of the CPS for simulation-based CPS goal

verification.

1.4 Scope and Contributions of the Thesis

4. Empirical evaluation

3. Environment model generation approach

2. Formal Modeling of CPS Goal Verification

1. Systematic Literature Review on Environment Modeling

Figure 1.2: Thesis scope

Figure 1.2 shows the scope of this dissertation. This dissertation first conducts a systematic
literature review in environment modeling to provide the current research landscape. We then formally
model the CPS goal verification process and define the environmental model generation problem from
that model. We propose a novel data-based model generation technique that can efficiently solve the
model generation problem by utilizing Imitation Learning (IL). Finally, we apply our approach to the
goal verification of real CPS controllers.

In summary, below are the contributions of this paper:

1) We provide a landscape of the concepts and models of the environment in the current environment

modeling studies.

2) We shed light on the problem of environment model generation for CPS goal verification with a formal

problem definition.
3) We propose a novel data-driven approach for environment model generation utilizing IL.

4) We empirically assess the application of our approach through case studies with real CPSs.



1.5 Thesis Organization

This dissertation is organized as follows: Chapter 2 provides the systematic literature review on the
environment modeling and compare the related environment modeling approaches and our approach.
Chapter 3 defines the formal framework of CPS goal verification and define the problem of environment
modeling. Chapter 4 proposes a novel environment model generation approach. Chapter 5 performs an
empirical evaluation based on real CPS case studies. Chapter 6 concludes this dissertation by summa-

rizing the achievements of this thesis and suggesting some future works.



Chapter 2. Literature Review on Environment Modeling

2.1 Introduction

This chapter introduces the concept of the Cyber-Physical System (CPS) and the CPS controller
which is the engineering target of this thesis. In addition, this chapter introduces the concepts and

models of the environment by systematically surveying the environment modeling studies.

2.2 Cyber-Physical Systems and Related System Types

Cyber-Physical Systems

Cyber-Physical Systems (CPS) is a system having both physical and software layers deeply inter-
twined [4]. The physical layer sense the system and its operational environment through sensors, and
actuate the systemaction through its actuators such as motors. In the physical environment the CPS
continuously collect, analyze, and behave at runtime. Many modern systems are CPSs, so we can find

many applications, such as autonomous vehicles [5, 6], robots [7, 8], smart factories [9, 10], and medical

devices [11, 12].
= _\

—~N\

-t

Figure 2.1: An example of the CPS: Autonomous vehicle

Figure 2.1 shows a representative example of the CPS, an autonomous vehicle. Autonomous vehicles
are one of the most actively studied CPS these days. Autonomous vehicles are huge machines that exist in
the physical environment, and at the same time, they are also computers that judge and act intelligently.
According to the basic structure of CPS, an autonomous vehicle has software, the cyber layer, that is
the intelligence of the vehicle and physical layer that makes the vehicle’s behavior in reality.

In this dissertation, we especially focus on the development of the software part of the CPS, which is
the intelligence, decision-making mechanism, or controller of the CPS. In the CPS development, software
engineer participates in the development of the CPS controller (sometimes called controller system) that
decides the action of the CPS. The CPS controller is given the current CPS state which is observed by
sensors. The controller then decides an action to achieve CPS goals (e.g., safety, performance). Therefore,
the CPS controller can be defined as a module or a function that returns a proper CPS action depending

on the given CPS state.



Autonomous Vehicle

Adaptive cruise | | Lane-keeping Y
control system system
A A T “Ssmmmos

A\ 4 A\ 4
Front distance Driving speed Position Steering angle

Figure 2.2: Controllers Constituting Autonomous Vehicle

Figure 2.2 shows examples of the controllers of the autonomous vehicle. The adaptive cruise control
system of an autonomous vehicle recognizes the forward distance and controls the speed to maintain a
safe distance. The lane-keeping system recognizes the position of the vehicle on the lane and controls the
angle of the handle so that the vehicle faces the center of the lane. The software engineer who develops
the adaptive cruise control system or the lane-keeping system of the autonomous vehicle implement

effective mechanisms to return an optimal driving speed or steering wheel angle (i.e., CPS action).

Previous
distance

d;

Environ TR

Previous Distance to
steering lane center
angle d
o R _ t+1

rane kee i

Figure 2.3: Interaction between the CPS controller and the environment

More specifically, a CPS controller continuously interacts with the CPS environment as shown in
Figure 2.5. The CPS controller senses the environment according to the sensing capability of the CPS
and receives the information. It returns CPS action based on the observed environmental state. The
CPS action executed makes a change in the next environmental state. Therefore, the future state of
the environment is affected by the previous CPS actions and the environmental states. The changed
environmental state is again observed by the CPS and used in the CPS’s action-decision. The CPS

continues to repeat this process.

Self-Adaptive Systems

Self-adaptive systems (SASs) continuously adapt their behavior or structure to satisfy goals in
changing environments [13]. SAS has a feedback loop consisting of a controller that determines the
configuration for adaptation [3], which continuously checks the goal achievement and decides on the
configuration based on its adaptation strategy. Based on the adaptation strategy, an SAS respond
to unanticipated situations of the system itself or its operating environment [2]. These unanticipated

situations are referred as uncertainty. Uncertainty can come from imperfect requirements, defective



SAS design or implementation, or the runtime environment [14]. Among these various reasons, the
environment is one of the most interesting and challenging entities to address in SAS development. It
is difficult to fully anticipate at design time the environment that an SAS will encounter during its

operation, and modern systems have environments that are complex and open.

Self-adaptive system

Adaptation | read
goals | Managing System

sense adapt
v

h 4

Managed System

sense effect
A 4 A A

Environment

Figure 2.4: Conceptual model of an SAS [2]

Some papers that introduce SAS engineering provide a fundamental comprehension of SASs and the
environment [15, 2, 13]. Fig. 2.4 illustrates a conceptual model of an SAS [2], including the relationships
between the SAS and the environment. The environment is an external world comprising observable
physical and virtual entities where the SAS operates. Given that the environment is regarded as uncer-
tain, the SAS continuously senses it to reliably achieve its adaptation goals. The sensed environmental
condition affects the decisions of the SAS, and these decisions, in turn, can have new effects on the
environment,.

As shown in the Figure 2.4, SAS is a system that interacts with its operational environment. Based
on the observation, the SAS decides its action to achieve its adaptation goal. In this perspective, CPS is
also a kind of SAS. CPS also observes and interact with environment, and continuously makes decision
to achieve its goal in the uncertain and changing physical environment. Almost of the modern CPSs
have intelligence for adaptive action-decision, so almost of the CPSs can be regarded as the SAS, and
this dissertation also considers them. However a system can be self-adaptive even if it does not have any

physical part, so the concept of the CPS is partially subsumed by the SAS.

System of Systems

A System-of-Systems (SoS) is a large-scale complex system which consists of independent and au-
tonomous constituent systems (CSs) contributing to achieve an SoS-level common goal(s) [16]. The SoS
goal is one that is hard to achieve with a monolithic system, thus it is achieved by collaborations and
cooperations of the CSs as they interact with each other utilizing SoS resources [17]. To guarantee the
goal achievement of an SoS, CSs in an SoS should effectively provide their own capabilities in the form
of collaborations. In addition, interactions between CSs should enable an effective collaboration within
an SoS.

This type is an important and interesting type of the modern systems. Examples of SoS are clusters

of vehicles or drones, smart factories where many robotic systems work together, and complex defense



systems with multiple weapon systems. As the size and influence of SoS increase, an important objective
of SoS engineering is to ensure that SoS goals are achieved stably regardless of uncertainty. Therefore, for
SoS engineers, it is important to verify whether an SoS goal can be successfully fulfilled by the collabora-
tion. For the SoS verification, statistical verification is widely used for quantitative verification [18, 19].

In this perspective, the CPS having multiple CPS controllers is SoS [20, 21]. Independent CPS
controllers have their own goals. For example, the adaptive cruise control system of autonomous vehicles
aims to maintain a safe distance, and the lane keeping system aims to drive along the center of the
lane. Each CPS controller operates independently, but at the same time, it can be seen that it works
together for the higher goal of the CPS within the same CPS. Therefore, it can be seen that there is an

intersection between CPS and SoS.

SAS

Figure 2.5: Relationships of CPS, SAS, and SoS

Figure 2.5 summarizes the relationships of CPS, SAS, and SoS. There is the intersection of the CPS
and SoS, which represents the case of CPSs having multiple autonomous CPS controllers. In addition,
almost of the CPS and SoS aim to have the adaptation capability to the uncertainties in the environment
or the system itself. Therefore large portion of the CPS and SoS are overlapped in the concept of SAS.
In this dissertation, we consider the CPS that adaptively decides its action responding the uncertain
environment, and also have one or more CPS controllers in the CPS.

In the following section, we systematically survey the environment modeling of the SAS, which
embraces the concept of CPS. To provide a domain-general concepts and models of the environment,
not limited to the physical environment, we surveyed the environment modeling of the SAS, not the
CPS. Because the environment of SAS also represents the broad concept of the CPS environment, we
first understand the environment of SAS, and we then utilize the survey result for the CPS environment

model generation.

2.3 Systematic Review Protocol on Environment Modeling

To develop a system that is adaptive to an uncertain environment, such as SAS and CPS, numerous
engineering approaches have been proposed, such as eliciting adaptive requirements from the environ-
ment [22, 23], analyzing SAS design while considering an uncertain environment [24, 25|, testing an SAS

implementation with environmental inputs [26, 27], and updating environmental knowledge for optimal



runtime decision making of an SAS [28, 29]. In this context of active research on an SAS in an uncer-
tain environment, one shortcoming we noticed is that the meanings of “environment” and “uncertain
environment” are inconsistent across different studies. For example, different papers describe “uncertain
environment” as an environment that changes itself over time, an environment that has been changed by
an SAS, or an environment that has been misrecognized by sensor noise, among other definitions. This
inconsistent understanding makes it difficult to compare different studies.

Although there could be many reasons for this inconsistent understanding of the environment, what
we focus on is the lack of overall knowledge of how other researchers have interpreted the environment
of an SAS. In the software engineering community for SASs, an implicit agreement on the concepts of
the environment has been reached, but this agreement has led to ad hoc interpretations. We believe that
the various interpretations of the environment of an SAS are all meaningful in establishing a concrete
knowledge of it. Therefore, in this paper, we conducted a systematic literature review (SLR) to gather

and analyze these interpretations. We specifically tried to find out:
e how various researchers commonly understand the concept of the environment of SAS, and
e if there are cases in which their understanding of the environment is expressed as concrete models.

For the purpose, we automatically and manually searched 3719 papers and selected 128 papers as
primary studies. We examined the how the studies defined and described the SAS environment and how

existing studies abstracted it as models. Specifically, in our SLR, we found and provided:
e five common characteristics of the environment of SAS and their trends in the primary studies
e two common sources of environmental uncertainty and their trends in the primary studies, and

e 14 reference environment models for SAS with different purposes and expressiveness for the char-

acteristics.

On the basis of some guidelines for SLR, [30, 31, 32], we designed a review protocol that includes the
review steps and specific inputs and outputs for each step ( Figure 2.6). Designing a review protocol in
advance prevents a biased or subjective survey, and disclosing it ensures a reproducible review. According
to the goal of this SLR, we specified the RQs, automated search engines, manual search venues, and the
search string. The papers searched were evaluated to determine whether they were primary studies’
under the predefined criteria. The selected primary studies were then examined thoroughly. These
studies also became the sources of cross-reference searching, a step in which all the references of the
primary studies were exhaustively explored to minimize the possibility of missing important papers.
Any newly discovered paper was evaluated according to the selection criteria. In particular, we utilized
the “snowballing” method?. When searching finished, we extracted predefined data items from the
primary studies. The extracted data were analyzed, and the analysis results are reported in Sections 2.4
and 2.5. The rest of this section describes the elements of this protocol.

The purpose of this SLR is to show the trends of how the concepts of the SAS environment have
been understood and abstracted as environment models of SAS in software engineering. To achieve this
purpose, we specified questions that will be answered, as shown in Table 2.1. Regarding RQ1, to under-

stand the environment of SAS, we surveyed how primary studies have explicitly defined the environment.

Mn this case, a primary study refers to a paper subject to review, and the SLR. itself is a secondary study [30].
2The snowballing method exhaustively explores all the backward references (cited by the subject paper) and forward

references (citing the subject paper) until no additional papers are discovered [33].



Research Questions “Snowballing” method

Automated search engines v
Cross-reference

Manual search venues i
- o » Searching —P searching
earch sting 3163 | Candidate 556 | Candidate
’ papers papers
Selection criteria- - »| Selection Selection
Selected Selected
papers 100 28 papers
128 Primary studies
Data extraction items----- > Data extraction

lExtracted data

Data analysis

lAnaIysis results

Reporting the review

Figure 2.6: Overview of the review protocol

For RQ2, both the explicit definitions and characteristics used to describe the environment were clarified.
RQ3 was included because environmental uncertainty is a huge area of interest in software engineering
for SAS but remains an ambiguous term. In this SLR, we surveyed sources of the environmental uncer-
tainty and their coverage in primary studies. For RQ4, we selected papers from the primary studies that
proposed environment models and surveyed these modeling methods. RQ5 looked at the application of
the environment models. Finally, in RQ6, we examined the expressiveness of the environment models,
especially how the characteristics of the environment were represented in each model.

Different automated search engines that could help find related papers were utilized to collect ap-
propriate primary studies for answering the RQs. The selected search engines are listed in Table 2.2.
Widely used computer science article search engines were selected, and various multi-disciplinary search
engines were also used to search exhaustively for as many related works as possible. In addition, we
conducted a manual search for publications in related journals and conferences (Table 2.3) for added
focus on high-end software engineering and SAS-related venues.

The following search string was used to find related papers:

{(self- OR adapt) AND (software OR system) AND (environment) AND

(uncertain)}

Papers focusing on “software” or “system” with “self-” prefixed properties or “adapt” (as in “adaptive,”

10



Table 2.1: Research questions of SLR

Category ID RQ

Definitions of the environment. How did primary studies explicitly define

Concepts of | RQ1
the environ-
ment of the RQ2
adaptive CPS

the “environment” of an adaptive CPS?

Characteristics of the environment. What characteristics of the environ-

ment of an adaptive CPS did primary studies mention in describing it?

RQ3 Sources of the environmental uncertainty. What did primary studies

consider to be the sources of environmental uncertainty?

Modeling of the environment. Who models, how do they model, and why
Models of RQ4

the environ-
ment of the RQ5
adaptive CPS

do they model the environment of the adaptive CPS?

Application of the environment models. When and how are the environ-

ment models used?

Ezxpressiveness of the environment models. How are the characteristics

RQ6 . .
of the environment expressed in the models?
Table 2.2: Automated search engines

Discipline Search engine

Computer IEEE Xplore (http://ieeexplore.ieee.org/)

science and ACM Digital Library (http://dl.acm.org/)

related subjects DBLP Computer Science Bibliography (https://dblp.org/)
Web of Science (http://www.webofknowledge.com/)
SpringerLink (http://link.springer.com/)

Multi- Scopus (http://www.scopus.com/)

disciplinary Wiley Online Library (http://onlinelibrary.wiley.com/)
World Scientific (https://www.worldscientific.com/)
ScienceDirect (http://www.sciencedirect.com/)

“adaptiveness,” etc.) were searched. The “self-” prefix identifies the most general terms of various adap-
tive properties [34]. We likewise searched for studies explicitly referencing the uncertain environment
or environmental uncertainties of SAS, which were both caught by our specification of forms of “envi-
ronment” and “uncertain.” This search string was used for both the automated and manual search; the
search scope included titles, abstracts, and author keywords of the papers.

The searched papers were evaluated using the predefined selection criteria in Table 2.4. There were
both inclusion and exclusion criteria. If a paper satisfied all the inclusion criteria and none of the exclusion
criteria, then it was selected as a primary study. Inclusion criteria IC4 evaluated whether a paper was
appropriate to answer our RQs. Our purpose was to gain a general knowledge of the environment of an
SAS from papers on developing systems to be adaptive to the environment, so only domain-general SAS
engineering papers were included. All the authors of this work read the abstracts of the papers (and the
introductions if needed) and together judged if the papers were appropriate to answer our RQs. Other
criteria helped control the discipline focus, quality, and form of the primary studies.

Extracted data items were identified for each RQ (Table 2.5). Following our predefined review
protocol, we searched 3163 papers (2987 automatically, 176 manually) and selected 100 primary studies.

11



Table 2.3: Manual search venues

Type Venue

ACM Transactions on Software Engineering and Methodology

ACM Transactions on Autonomous and Adaptive Systems

Journal IEEE Transactions on Software Engineering

Journal of Systems and Software

Information and Software Technology

Intl. Conference on Software Engineering

Intl. Symposium on the Foundations of Software Engineering

Confer-
Intl. Conference on Automated Software Engineering

ence
Intl. Symposium on Software Engineering for Adaptive and Self-Managing Systems

Intl. Conference on Self-Adaptive and Self-Organizing Systems

Data extraction was conducted manually, and the collected data were analyzed to answer the RQs.
Using the “snowballing” method, we searched an additional 556 references and selected 28 more primary
studies. Thus, a total 128 primary studies were surveyed ( Figure 2.6). The details of searching and
selection, such as the number of papers for each engine and venue or the criteria evaluation results, are

accessible on our website but not fully described here?

. From the primary studies, we extracted data
and analyzed these to answer the six RQs. Throughout all the review steps, to create a reproducible
and objective survey, we recorded all the outputs for each step and made all the review data, including
extracted raw data, accessible?. In this section, we report the analysis results for each RQ.

Following section reports the review results for each RQs.

2.4 Review Result 1: Concepts of the Environment

2.4.1 Definitions of the Environment

We first collected explicit definitions to understand the environment of an SAS. We searched
sentences explicitly defining “environment,” such as “environment is defined as...” or “environment
means....” Owing to the strict format of sentences, only three explicit definitions were found, as listed
in Table 2.6%. [35] defined environment as external and observable objects. [36] highlighted the fact
that it is not under the direct control of an SAS. By contrast, [37] defined environment as circumstances
interacting with the SAS. In paraphrasing the existing definitions, we can say that the environment of
an SAS is a set of external and observable objects that are not under the control of the SAS but interact
with it.

The definitions are acceptable and indicate some key characteristics of the environment, such as
diverse factors, externality, observability, and interaction. However, only a few of the selected studies
explicitly defined environment, and they varied considerably in terms of the authors’ perspectives. Such
differences made it difficult to get considerable knowledge about the concept of environment from the
existing definitions only. This outcome confirmed the assumptions that drove our motivation to conduct

this SLR. Fortunately, the studies without explicit definitions implicitly shared a common understanding

3 Access the SLR website for all the review data: https://sites.google.com/se kaist.ac.kr/sas-environment-slr/
4Citation numbers for primary studies begin with “P”. A list of the primary studies is provided on our SLR website?

due to lack of space.

12



Table 2.4: Inclusion and exclusion criteria

Inclusion criteria

IC1 | Papers written in English

109 Research papers peer-reviewed and published in conferences, jour-
nals, or books

IC3 | Papers in computer science field

14 Papers on the topic of a domain-general software engineering ap-
proach for self-adaptive systems’ adaptation to the environments

Exclusion criteria

EC1 | Duplicated papers

EC2 | Papers whose contents were not fully accessible

EC3 Papers not in the form of full research papers (i.e., abstracts,
tutorials, or reports)

EC4 | Collections of studies (i.e., books or proceedings)

BCS Papers summarizing existing studies or concepts (i.e., overviews,

introductions, keynotes, roadmaps, or surveys)

Table 2.5: Data extraction items

RQ Data items

RQ1 Explicit definition of the “environment” of an SAS

RQ2 Expressions explicitly mentioned to describe characteristics of the environment

RQ3 Sources of environmental uncertainty addressed in the primary studies

RQ4 Environment modeling details (modeling agent, effort, purpose, formalism, process, etc.)
RQ5 Environment model application details (application time, usage, supportive techniques, etc.)
RQ6 Characteristics of the environment expressed in the models

about the environment. consequently, we attempted to gather this understanding in answering RQ2 on

the basis of these definitions.

2.4.2 Characteristics of the Environment

To establish the concept of the environment of an SAS, we collected characteristics of this envi-
ronment. Despite the limited explicit definitions in RQ1, almost all the primary studies described the
environment of an SAS of their interest. We searched for all the sentences that included “environment”
in the primary studies and collected and categorized the numerous adjectives and nouns from the sen-
tences that described the environment, as shown in Table 2.7. The expressions in the primary studies are
organized in the first column and then listed in the second column. We discussed how to classify various
expressions into some common characteristics and, finally, organized the five common characteristics of
an SAS environment. Descriptions for each characteristic and the related expressions are also given in
Table 2.7.

Diversity: Environment comprises diverse environmental factors. The term environment does

not only mean a specific object, but a set of environmental factors of interest. Specification of the

13



Table 2.6: Definitions of environment

Explicit definition of the “environment” of SAS Ref.

“anything observable by the software system, such as end user input, external hard- P6
ware devices and sensors, or program instrumentation”

“the physical world or computing elements that are not under control of the system” | P24

“circumstances that interact with or affect the system” pr7

environment requires a set of specifications of each environmental factor of interest. An environmental
factor could be cyber, physical, human, external service or systems, or even time. As there can be
various environmental factors, they may each have their own constraints or rules, such as law of physics.
Therefore, the environment of an SAS should be finally defined according to the domain knowledge.

Externality: Environment is outside the SAS boundary. Therefore, only objects that are outside
the system boundary can be regarded as environmental factors. Given its externality, environment is
not under the direct control of the SAS. It is not directly modifiable by an SAS like a system variable,
but an SAS can give a stimulus to the environment through actuators and so on.

Observability: Every external object of interest can be regarded as an environmental factor of
an SAS, but a constraint is that the object must be observable by the SAS. Therefore, defining an
environment of an SAS is related to the monitoring capability of the SAS. In SAS academia, we do
not regard all external things as an environment but as external and observable things. Environment is
observable by monitoring components of an SAS, so the SAS can respond to the environment.

Interactivity: Environment and SAS interact and thus affect each other which is why the adap-
tation of a system to the environment is needed. Environment specification should specify the mutual
influence of the environment and the SAS. Environmental influence on the SAS can be adverse or sup-
portive of SAS goals. An external and observable object not related to and interacting with the SAS
does not need to be regarded as an environmental factor.

Uncertainty: Environment is not certainly anticipated at design time. It is uncertain because it is
an external element. If SAS engineers have considerable domain knowledge, then a better expectation of
the runtime environment can be made, but a complete knowledge of the external factor is almost impos-
sible. Continuous environment monitoring of the SAS reduces the uncertainty. Numerous expressions
implying limited and incomplete knowledge about the environment, such as unknown, change, dynamic,
probabilistic, and so on, are used.

Figure 2.7 shows the summary of the primary characteristics of the environment.

Figure 2.8 shows how many papers mentioned each characteristic of the environment. This informa-
tion indicates what environmental characteristics were relatively familiar to the researchers as expressed
in their writing. For example, “dynamic operating environment” was one of the most widely used ex-
pressions to describe the environment. The figure shows trends in the characteristics mentioned. More
important than the trends, however, is that in addressing RQ2, the various characteristics and expres-
sions were organized to help understand the environment more comprehensively. Although there were few
clear definitions, the SAS research community has established a significant and implicit agreement on the
characteristics of an SAS environment. Lastly, we were able to make these agreed upon characteristics

explicit and visual.

14



*O1)STUTULIYOP-UOU ST 9SPI[MOUY [RIUSTIUOIIAUD O T,

O1)SBYD0I)S ‘OT)

-si1iqeqold ‘OT)STUTULIO)Op-UOU (D1IST[IqR01])

"OUII) IOAO IOTARYQ( IO S91R)S ST SoSURYD A[[RITWRUAD JUSUIUOIIATS O],

orureudp ‘uorenjony ‘eSueyd (drureud(])

"ISIX9 PInoo mu@w@gﬁhﬁﬁ [ejToWUOIIATUD wﬂﬁmmﬂ«\é

gursstw ‘98po

“JUOTITIOIIATD UMOUNUN UR 00Tl Ued QS "030[dUI0OUl 9¢| ARUI JUOWITOIIAUS 9] JO 9SPI[MOUY] | -[MOU JO e[ ‘UmOUNUN (SUIPUR)SIOPUNSI) Ayureqreou)
o[qelorpardun ‘pajoad
‘QYS Ue Jo owily USIsop oY) Je pajyedoijue A[NJ j0U ST JUSWIUOIIAUS 9T T,
-XoUNl ‘Ueesalojun ‘ureirsoun (siqejorpaxdup))
“TOT10RIsIIRS [R03 QS 10 pasn Aparproddns aq Aeul JUSWUOIIAUS O], 901nosol (eouenpul oarproddng)
1RAI) ‘O[rIOARIUN ‘DATIANISID ‘OSIoA
"UOTPOR]SIIRS [BOS QS 100[j@ A[OSIOAPER ARUI JUOUIUOIIATD T,
-pe ‘ojesun ‘SuUIqIN)SIP (POUSNPUI 9SIOAPY)
aInyrej ‘90UISJI9YUI [eUSIS ‘SUISUSS
"soanrej oq Aeur 10 939[dWOOUI 8¢ WD QS PUB JUOWIUOIIATD UMD SUOTIORIIIUT
Ul UoIjRLIRA ‘OSIOU  ‘IOLID  (ssousjoiduroou])
AYATIORIDIU]
‘(s107EN10R) S101000 PUR SIOSULS SII YSNOIY) JUSWUOIAUD oY) YIIM S}ORIONUI §YS UY Ioyenjor /104000 ‘10sues (RIPIIA)
I033119 ‘eoejroqur ‘jord
"‘QVS o3 £q Pojooge SI pue S109fR 1 0S ‘QYS UR M S)ORIDIUI JUSTIUOIIAUS 9T,
- “100JJR ‘90USNUI ‘UOTIRISNUT (TOT}ORISIU])
"JUDAD 'UO
I0 uOoI)Ipuod INdul [RJUSWIUOIIAUS S,QYS 9} ST uolydeois ‘siojowrered I0 so[rLIRA [RJUSW | -twousyd ‘JueAs ‘worjpuod ‘ndur ‘ejep ‘enyea
-UOIIATID O1[} JO SonJeA IO ®)ep UO PIseq JUSTIUOIIATL )1 $3o1d1oqul pue soAtdIod Qg Uy | ‘O[qelrea ‘oinquiyje ‘1ejourered (a(qeiaidiojuy)
aIns | A[IqeAlssqO
"QVS ue Aq 9[qeAIdSqO SI JUSWUOIIAUD T,
-BOUI ‘I0JTUOW ‘OSUSS ‘9[(RAIDSUO (S[(RAIISC())
“JUOUWINOIIATD S)T [0IJU0D (A]10911p) jouued §Y§ Uy 1991IPUL ‘[OIJU0D O ([0I3U0D JO M)
QUWITJUNLI ‘U
QUWIIUNLI JB S9IN09XD pue ‘sojerddo ‘pofojdop ST wo)SAS © o10UM ST JUOWUOIIAUD O T, i
-foidep ‘mornoexe ‘uorjeredo ([euorjered()) AYeuUIa)X]
‘Arepunoq Sy oY) JO 9pISINo SI JUSTWUOIIAUS YT, Surpunoms ‘TeuIagxo (TeuIo)xy)
"SHUTRIISUOD MO SIT SR JUOUIO[D [RJUOWUOIIATD Uy SIUTRIISUOD (PourRIISuo)))
I030®] ‘QuIl) ‘9dIA
*(S901ATOS) SUIOISAS [RUINXO 10 ‘(surRUNY) SI9ST ‘sjuoumofo [estsAyd 1o Surnd AYISIOAI(T
-19s ‘We)sAs ‘(UewNY) Iasn ‘(JUSWIS[D JUSWIUOT
-woo ‘ojdwrexe I0J ‘SIUOUID[0,/SI1030%] ([RIUSUIUOIIAUS) SSIOAIP JO SISISUOD JUSTUUOIIAUS T[T,
-1au0) TeotsAyd /Surnduos (s10300] 9SIOAL(])
sonst
uorydriose(q suoissaxdxo o1 dxy
-I9j0ReIel)

suorssa1dxo IT[) pue QY JO JUSTUOIIATD d) JO SOTSIIONORIRYY) :L'C O[eL

15



Environment consists of diverse
- --- environmental factors.

keywords: diverse environmental factors
. . . Diversity
Environment is outside
of system boundary
keywords : system boundary, . .
out of control . " Environment is observable
Externality Observability - - by SAS.
Characteristic keywords : sensor, value, data
of Environment
of SAS /

Environmental state at runtime is
not fully anticipated at design time.

-- Interactivity  Uncertainty -- keywords : unpredictable,
misunderstanding, dynamic,
probabilistic

SAS and environment
affect each other.

keywords : sensor, actuator,

influence, system goal

Figure 2.7: Environment characteristics

2.4.3 Sources of the Environmental Uncertainty

Among the characteristics of an environment, uncertainty is one reason that a system should monitor
and adapt continuously to the environment. However, the use of the term “uncertainty” is typically
conceptual and ambiguous and can thus cause inconsistent understanding among engineers. To tackle
ambiguous understanding®, we examined concrete sources that cause environmental uncertainty. In
the selected primary studies, we found three papers [P22, P94, P102] that proposed taxonomies of
environmental uncertainty sources. We leveraged their taxonomies to analyze which sources were widely
addressed in the primary studies. We summarized these taxonomies of sources® and reorganized them
as presented in Table 2.8.

As the descriptions of existing sources had overlapping meanings, so we reorganized the sources into
two common sources. The first common source of environmental uncertainty is limnited environmental
knowledge. An SAS engineer may have limited knowledge about the environment because the envi-
ronment changes or the environment was not fully identified. Sometimes, SAS engineers can miss some
environmental factor in consideration. The primary studies have divided this source into different types
of environmental factors (cyber, physical, and human). However, the common reason for the uncertainty
is the limited environmental knowledge no matter the type of factor.

A second orthogonal source of environmental uncertainty is incomplete interaction with the
environment. Even if the environment is well specified, environmental uncertainty arises if the inter-
action with the environment is not as expected. SAS interacts with the environment through sensing
and effecting. If sensing or effecting fails or returns inaccurate or noisy results, then the environmental
uncertainty would increase.

We reorganized the common sources of environmental uncertainty, but the existing source terms
and descriptions are cited in Table 2.8 for reference.

Figure 2.9 shows the summary of the sources of the environmental uncertainty and their relation-
ships. The environmental uncertainty is cause by two primary sources, ‘limited environmental knowledge’
and ‘incomplete environmental interaction’. Environment changes dynamically and sometimes its state

is non-deterministic. It makes the environmental state unpredictable before runtime of the SAS. Con-

5We also surveyed definitions of “uncertainty” and “environmental uncertainty,” but these were not included in this

paper due to lack of space. Please refer to our website?

16



[76d] JIJUOWIUOIIAUS UOIINDIOXD 9} Uodn $100[J0 9SIoAD®

aInyre
[76d] 101909, donporjur - 1o uoryejdepe ur SULINP [Ie] IOYIO URD *° I0JRNIOR UR, L
103001
sAem
Tw@&_ ﬁ.HOPOQ.Wﬁ@: ﬁﬂQAu: . J0%99119
q 2zdl " pojedidrjueun Ul JUSTIUOIIAUD UOTINIIXS 9} SIde yer} uoryerdepe uy,, 108
SWIO)SAS
cod mmﬂm m\mmm SO [czd] «(103enioe) syusuoduwios Surieess [eorsAyd oyy ur uorsoord oyy jug | OFHIIIEUL
eo1sAd-10q 4D ur £jurejroou
fromsie-od ' ' 0 ‘oIem1)Jos S1 JO ADRINDOE S} JO UOIDUN] ® ATUO J0U ST “** AY[Iqe S, UI9ISAS,, UOT}ORIOIUL
anyre RIUSWIUOIIATD
[76d] . oIn[rej 10suag,, [76d] .Ar1edoid e jo anfea o1} 110dol 10 SINSEI JOUURD IOSUBS © UM, Te | 1o )
I0Suog ajorduroout
v6d] [76d] [eUSIS ® Jo A)1IR[D 91} 9OMPAI JBY} SEIURCINISIP Jud)sIsIod pue WOpUeRY,, 10STIoS wogj
¥6d] PSIou I0suog
‘leotd‘ced] estou 0y @:M b:%ﬁ@oqu (@zd] «poxy st ongea peniov o 1 ojeInooeu] Ayuregoou) g
o ’ K UOAD “*** OWIT) ATOAD IOQUINU JUSISPIP ATIUSI[S ® WINJOI AvW *** IOSUSS Y,
[co1d'zed] -
,doo[ o1} Ul urWINY 0} anp AJUTRLIOU(),, [zed] e1qeiotperdun A10a o¢ Aewn (URwNY) MOID O} JO IOTARYD( O,
uBwWNY] -
[c01d‘zed] | [cod] «(3xe1m00 o) Ul Ajure)Ieoun) 90anos snoradid a1} Ul PAQLIISIP Sem [DIM -
(SwolsAs TeorsAyd-10q4o ur Ajureyrooup),, ‘)X99U0D JO JoSqNS © SI 9IBRMIJOS O} UO PlIom [eIISAYd JO 100[0 oY),
[eo1sAy g - o8pormouy
U ———— [76d] poredodijue oq jouted JRl) JUSUUOIIAUS ST} Ul SUO)IPUOD PUR SIUSAT],, (10108 [BJUSTIUOIIATD
¥6d] « ﬁ ! | Q : Qs [20Td] (e8ueyd © 03 9SO[D dIe SUO)IPUOD JUSTIUOIIATD Y, R w pajIp woy
‘lzord‘czd] uonersdo I
aminj ut Eop@Ef@M jo Wﬁ:@ﬁ@oz N [ced] soButtp noMNX o 1x0102 o1, :M@\Mu Ayedeouq 1
‘e01d zed] . 1X0JU0D dY) Ul \ngﬁﬁ@oqbs [62d] soBred o3 np posspHEALt Afsnonted 0
“ ' ' i oIe PIYM ‘suonIpuod Jurperodo JuaImod
ot np ! »
92IN0§ aoanog (pa
(20Td ‘P6d ‘TTd) swiiey Sunsixy (201d ‘v6d ‘zgd) uondiiosep Sunsixy
(Sumsixry) | -ziue3dioay)

AJUIe)I90UN [BJUSTIUOIIAUS JO S9INOS ' O[el,

17



Uncertainty

e 59 k2 1
ks J
...... 1550505254
R fosese Ivi
tofetstisati totetesetsti
Besed  [R6esesd
essetise 23505205
= = iossecrsess I 0o txtecete!
Rocadcsesd 0350505
Poaeade] [
i<esseeed aeretetss
SR Fietsterstl
Iofetetiseti totetesetst]
Bosesed  [R6essesd
Jeiasetiset 2250505
ioasercress I vSetsatetel
Rosecsesd forereseses
1etsereiens R FSetietstel
jetazetesel tareeTetasi
josseses]  fsesessisd
Poieoeed  [e500aeeq
Jeiasetiset 2250550
isasorcress I e5esstate%e!
Rocsecsesd foreteseted
Poested [
jetazerese aetitetsd
[T  [RRXRY
05030505644 355505
[Rosesesded 192500505
josazeteses 025052505
Piaosae] [
tofetesaseti 305652505
ietsorerocs I Poeitetstel
jetasetene 22522
[RRRI]  [REXRY
tofesstaseli 030505255
[R05305%0] 125005
Jeazetetes 02505505
Peiaeseed [
tofetetaseti 2305652505
Rosessed [
jetasetone EsrEatetes
Rl e
tofetstaseti tosototels
fo505%0] 12500005 RARAR
Jetazetese fagetotetes eaaas|
PO 00 AR
0503050505 20000 RAAAAA
Poicieosed [ RAAARA] T
ke 2352 NAaaaAl A
e [ NAAAA RARAAA
tofetstaseti 355 RMAAAA RARAA
Bossesded 16 Al R
Jeagetese 2355 Rl A
rogoseroredi I Fosctose RAAAAA RARAZA
RGeS [k RAAARA RARAAA

e e R T R O wC
& @ & EA S S O g
&@Q \({@' & 0\0 e“\(\ & L o9 ¥
X\ © o((\ © ((\4 \)(\Q (\6 A
0\ 00 4@ . \)
W QQO &
Characteristics I

Figure 2.8: Number of mentions of characteristics of an SAS environment

Limited environmental knowledge

[ Dynamicity of 1
1 environment TN fmmmmmmmmmm e

[ Non-determinism of 1
1
1

environment !
““““““““““ Environmental state at

Uncertainty/ runtime is not fully
anticipated at design time.

____________________ ( : ; \
( . .
[ Censor noise/failure & . Inaccurate situational
[t s ) ] awareness !
____________________ (" ITnovmortad roc: e
( . .
1 Actuator noise/failure :—»: Unexpected r.esults '
(St ; ] of adaptation !

Figure 2.9: Environmental uncertainty sources

sequently the environment becomes uncertain to engineers. On the other hand, the SAS interacting
with the environment observes the environment using noisy and faulty sensors. It makes the system
recognize the environmental situation inaccurately. In addition, SAS affects the environment through
inaccurate actuators, hence it is hard to accurately expect the environmental effect of the SAS actions.
This inaccuracy makes the environment uncertain to both engineers and the SASs.

In Figure 2.10, we also analyzed how many primary studies addressed each source of environmental
uncertainty. In these sources, environmental uncertainty caused by limited environmental knowledge was
addressed more than uncertainty from incomplete interaction. However, limited knowledge about the

human environmental factor was rarely addressed compared to the others. With regard to the sources of

18



Limited environmental knowledge
75

(-]
o

~
(=]

[=2]
o

(2]
o

Incomplete environmental interaction

Number of papers

30 26
20 13
10 6 5
| | |
0 I i e (|
Limited Limited Limited Inaccurate  Sensor failure Inaccurate Effector failure
knowledge of knowledge of knowledge of sensor effector

cyber factor physical factor human factor

Sources of environmental uncertainty

Figure 2.10: Frequency of addressing each source of environmental uncertainty

incomplete interaction, the sources related to sensors were relatively familiar to researchers, as evidenced
in the writing, more so those related to effectors. In noting the trends, we must also acknowledge
that even if various studies are addressing “environmental uncertainty,” their use of this term does not
necessarily rely on the same source. Therefore, researchers need to specifically explain their concerns

regarding a particular source of environmental uncertainty to prevent misinterpretation.

2.5 Review Result 2: Models of the Environment

2.5.1 Environment Modeling Methods

A model is an abstraction of a subject that represents its important features, and so examining
existing environment models allows us to find important features of the environment. In RQ4-RQ6,
we provided an analysis of reference environment models. We found 14 unique models that represent
the environment of an SAS from the 128 primary studies, and these are listed in Table 2.9. If a paper
named the model, then the name is presented in the table; otherwise, a descriptive name we created
for the model is listed. All the models provide an abstraction of the environment of an SAS, but their
representations varied depending on the purpose of the modeling and the authors’ perspectives. In
addition, the formalism of the model was decided based on the authors’ purpose. Some models followed
standardized formalisms, while others were created using the authors’ modeling languages or rules. These
details are summarized in the table. While the models are not explained individually in detail (the reader
is directed to the original reference for this information) due to a lack of space, the insights obtained
from their analysis (modeling process and modeling effort) are shown.

We summarized the modeling processes for each model® and noticed common milestones for the

modeling of the environment of an SAS. The milestones were as follows:
e Modeling the system boundary and environmental factors
e Modeling the environmental impact on the system goal

e Modeling interfaces of the system-environment interactions

19



[epou UOo1)eINIYU0IdI

Uuor)eId sseoo1d uory
8¢Id - pue  LIqerres  worjer VIIN
-U08 9SBD 1S9) UOI}IPUOD [RJUSWIUOIIAUY | -RINSHYUOISI PUR SOII[IRLIBA UOIIRN)IS JUSTUIUOIIAUN
-N3Yuod JTIOUIUOIIATG]
ouIyo T [opou 93RS UOI}ORIO)
Leld Sunyewr uorsoop uorjeldepe rewrydQ ETIN
oW 9)eIQ -TOIIATI® PUR WIDISAS 9IRMIJOS B U0OM)O( SUOIIORISIU] | -UI  JUSWIUOIIATS-WI)SAG
uorje) o011 Aouopuad
¥o1d 9917, sorouepuadop 1197} PUR S998IS 9[(RLIBA [RN)IXOIUO0!) CIIN
-OI[® SIUSWRIINDOI dIeMR-JUIUIUOIIAUG -Op 9[geLIRA  [BNJXdIU0))
Sur)se) ourr) suorjoe [opour juaut
L6d ddN ITIN
-UNI I0j SUIUIRS] [OPOWl JUSWIUOIIAUG | WISAS 0} Furpuodsoel oFueyo 9)e)s [RIUSUIUOIIAUY | -UOIAUS SUI)SO) JO OUIRK)
SUoT) auIou93
28d - S9OINOS AJUTRIIOOUN JO UOIJRULIONUT JLIOWINN 0TIN
-IPUOY [BJUSUIUOIIATS 9SIDAPR SULIO[dX] Aqurejreoun yoreugey]
uon
ouIyd uor)ed SJUTRIISTOD [RJUSUIUOIIATD pUR
cLd -eoyads Ajurelreoun pue 6IN
-eW  9)e1S | -GLIOA JI)SI[RAI PUR QIRMER-AJUIR}IOOU[) | ‘OSIOU IOJRN)OR PUR IOSUSS ‘OFURYD [RIUSUIUOIIAUG
QUITDRW 9)R)S SATORISNU]
suorjoe [epouwt
994 - UOISIASI [OPOW IOTARYD( SWIIJUTLY SN
w)sAs 03 Furpuodsal SaSuRYD 91R)S [RIUSWIUOIIAUY | UTRTIOP JTTOUIUOIIATG]
TUOUTUOIIATD [opouW JULUIUOI
€9d 10U 1119 S91R)S [RIUSWUOIIAUN LIN
pue IolaRyeq QS JO SISA[eUR [RULIOq -IAUS )OU LIJ9J SurlIesr|
ydersd
esd ydein) Ay1pIreA SURoaTD Jopow Furaorduuy SUOT)R[DLIOD II8T[) PUR $9JRYS [RJUSUUOIIAUG] 9N
MUTRIISUOD [RIUSTUUOIIAUH
[opouwt
¥rd OINILA sursewr uorswap uorjejdepe rewryd( 98URYD [RIUSWIUOIIATD DIISRYD0)G SIN
TUOTUOIIATD HINIA
wreIserp sjuade gypsodouy,
9¢d UOI}RISUDS 9POD JUOWIUOIIAUS SUIISI], YIN
ssep  TINN wISAs 03 sdIgsuorje[or  ‘sjoejriIe [RJUSWUOIIAUG | JO [OPOW  JUSTWIUOIIAUN
[epouwt
Rzd Jdan SISATeUR [RULIOJ dIeMR-AJUTRLIOIU[) [OPOW IOSUDS ‘JUOTUUOIIAUS ‘WISAS | IoAR[d oweS JUOWUOIIA eIN
“o  onserROols  NSTHd
wRISRIP uor) [OPOUW JUSUIUOIIATD RN
¢zd 090 ‘SIOSULS ‘SI0JOR] [RIUSWUOIIAUS ‘JUSUIUOIIAUY N
SSe[d  TINM | -eMoIP syueweImbal areme-£jure)roou ) -doouoo  peyIRW-YX Y THY
UOI)RINSHUOD ‘AJUTRIISOUN ‘9IRJISIUL JUSUL
L1d - JUOWUOIIATS 3UI)S9) SVS Ppow dde aAryoeIoyuU] TIN
-UOIIATS ‘JUSUWIUOIIAUS ‘90RLIDIUT WeIsold ‘wreIiSord
‘Joy | wsIi[ewaoq o8esn / asodind Surepon uorjejuasoadoy auwreu [OPON al

SVS JO JUSTIUOIIAUS 9} JO S[OPOIN :6'¢ °[qRL

20



e Modeling the variability of the environment

All 14 modeling processes included at least one milestone. The first milestone was identifying the system
boundary and enumerating the environmental factors that are outside of the system boundary. The
second milestone focused on the goal of the SAS and modeled how the environment affects the goal. The
third milestone highlighted the boundary between the SAS and the environment. It represented how the
SAS and the environment utilize their interfaces, such as sensors and actuators. The fourth milestone
modeled the variability of the environment. It expressed how the environment is able to change itself
over time or is changed by the SAS. It is not necessary to achieve all the milestones, and they do not

need to be achieved in a sequential order. The choice of milestones depends on the modeling purpose.

” """""""""" N l’ N
1 1

| ENV 1! E S Interface of I
: SAS boundary and ! N Y SAS-environment !
external factors I . . I

I 1 \' S interaction I
l\ ____________________ ,1 l\ ____________________ /1
” \I l’ \I
I Environmental 11 ENV ey eye I
: [ENV |—>| Goal] impact on : : Va;:‘?,?:ggno;:r e :
I the SAS goal 11 I
l\ ,’ ‘\ /l

Figure 2.11: Four major perspectives of environment modeling

Based on the findings, not restricted to specific RQs, we also learned the following four common
perspectives of primary studies for specifying or modeling the environment of an SAS shown in Figure
2.11.:

o SAS boundary and external factors: Identifying a system boundary is essential in defining the
environment; identifying the external environmental factors then follows. This perspective guides

engineers to clarify a boundary of an environment of SAS under consideration.

e FEnvironmental impact on the SAS goal: Understanding how the environment affects the SAS goal is
important to clarify the purpose of adaptation. This perspective guides engineers to elicit purposes

and appropriate methods of adaptation.

o Interface of the SAS-environment interaction: Interfaces between the environment and the SAS,
such as monitored environmental variables, actuating variables of the SAS, or specification of
incomplete interaction (e.g., noise or failure), should be identified. This perspective helps to define
an environment in the view of an SAS. It also specifies the limited amount of information about

the environment and control capability over the environment that the SAS can have.

o Variability of the environment: Change of an environment over time or by the SAS should be
identified for analysis by the SAS in the environment. This perspective helps to enumerate possible
environmental states that an SAS will encounter during runtime. It also reveals the insufficiency
of domain knowledge of SAS engineers and guides to define the degree of adaptiveness required for
the SAS.

21



Although these four perspectives of environment specification or modeling were not always fully
covered in each primary study, these must be sufficiently understood to have concrete knowledge about
a specific environment of an SAS. These four common perspectives will help researchers sufficiently
consider various aspects of the environment throughout the whole development process of the SAS and

in the modeling.

Manual

& low
& high

Automated

Modeling effort

0 2 4 6 8 10 12
Number of models

Figure 2.12: Modeling efforts of the environment models

We also examined the modeling efforts for each model, and these are summarized in Fig. 2.12.
We divided the modeling efforts into automated and manual modeling. Automated modeling generated
environment models automatically through the use of data by their methods (M5, M6, M8, and M11).
Manual modeling was divided into two cases. The first case (high) is when significant expert-level envi-
ronment knowledge, such as how environment behaves or which environmental conditions are expected,
is required (M2, M3, M4, M7, M9, M10, M13, and M14). The second case (low) is when modeling can
be completed with assistance, such as data, without significant knowledge (M1, and M12). Among the
14 models, only four were modeled automatically. The others were manually modeled. It is natural
for engineers to build models manually for their purposes. However, the fact that most manual models
require significant environmental knowledge suggests that the results of many engineering techniques

using environment models can vary, depending on the quality of the engineer’s knowledge.

2.5.2 Application of the Environment Models

- Requirement analysis | |
[S)
'§ Design & verification | |
E Implementation & testing |
< Operation decision-making | |
0 1 2 3 4 5
Number of modeils

Figure 2.13: Application of the environment models

In answering this RQ, we examined how the environment models were used. We summarized the
applications of the models in Fig. 2.13. We categorized the four usages of the models. The first was
requirement analysis. Some environment models were used to explicitly identify environmental factors
and elicit requirements they affected (M2 and M12). Another application was using the environment
models as verification environments to mimic the actual environments of SASs (M3, M6, M7, M9, and

M10). This was the most common usage. Another way to use the environment model was in generating

22



testing inputs for an SAS (M1, M4, and M14). The environment models of verification and testing
were used to explore failures of an SAS that were triggered by the environment. The last application
of the models was for the decision making of an SAS during operation (M5, M8, M11, and M13). The
environment models were generated or updated during runtime, and they helped an SAS make optimal
decisions in the runtime environment. The usage of each model is presented in Table 2.9.

We also summarized techniques that support leveraging the models but did not present them here
due to a lack of space (they are available on our website®). However, one point that we would like to
share here is that a common supportive technique of 11 models was simulation, which is regarded as the

most fundamental use of environment models.

2.5.3 Expressiveness of the Environment Models

Finally, we examined how the environment characteristics (revealed in answering RQ2) were rep-
resented in the models. Fig. 2.14 shows the analyzed results for each characteristic (the details of each
model can be found on our website®). For diversity (Fig. 7a), five models (M2, M4, M6, M10, and
M12) required explicit modeling of each environmental factor. They highlighted the independence of the
factors and could also represent the interaction among the factors. The other models implicitly showed
that an environmental condition comprising diverse variables. For externality (Fig. 7b), 10 environment
models (M1-M6, M10-M12, and M14) were decoupled from the system model. However, the other models
were coupled with the system model, and externality was implicitly a part of their modeling process.
For observability (Fig. T7c), only three models (M1-M3) explicitly described how the environment is
monitored by an SAS representing sensor interfaces for environment observation. The others did not
show an observation mechanism in the model but just assumed it.

For interactivity (Fig. 7d), all the models illustrated interactions between the environment and the
SAS, but the direction of interaction influence can be in either direction. First, environmental conditions
can affect the SAS; second, SAS behaviors can affect the environment. Nine models (M2-M7, M10,
M12, and M14) represented only how the environment affects the system. They showed how the SAS
goal is affected by or how the SAS reacts to the numerous environmental conditions. Only five models
(M1, M8, M9, M11, and M13) represented two-way interactions. They modeled how the environment is
changed by the SAS’s behaviors, in addition to the SAS’s reaction to the environment. When modeling
the interactions, the incompleteness of the environment was also represented in some models. Among
the models that expressed environmental influence on the SAS (Fig. 7d-1), only four representations of
inaccurate sensors (M1, M3, M8, and M9), such as sensor noise, and one representation of sensor failure
(M10) were found. Among the models expressing the SAS behavior’s influence on the environment (Fig.
7d-2), only one representation of an effector or actuator possibly being inaccurate was found (M9). This
result demonstrates that, so far, most models assume ideal interactions.

With regard to uncertainty (Fig. 7e), although there may be various ways to represent this in
the environment, we included how models represented the variability of the environment because most
models did this. Twelve models (M1, M3, and M5-M14) explicitly represented the variability of the
environment, but two models (M2, and M4) just assumed the environmental condition can vary over
time and did not represent it. Among the 12 models (Fig. 7el), six models (M1, M7-M9, M11, and
M13) represented how the environment responds to the SAS operation, and three others (M3, M5, and
M14) modeled autonomous changes in the environment over time. These nine models usually specified
environmental states and reactive or autonomous state transitions. The remaining three models (M6,

M10, and M12) represented variability as an enumeration of possible environmental states. In answering

23



a) Diversity

. Explicit: inde-

pendent env.

factor modeling

= Implicit

c) Observability

= Explicit: sensor

representation

Implicit

e) Uncertainty

b) Externality

Explicit: decou-

pled system

and env. model

Implicit

d) Interactivity

2 Only (Env.>Sys.)

influence

d-1) (Env.=Sys.) influence

20
(500

ORI . o
LR =i Inaccurate sensor
I i

Sensor failure

oo

o%4

%
%5
X
KK
’:0
25

oools!
&
%
5%
30
5%
e
¢
5
%
&
5

o2
9.

Coletats
dotads!
Fosele!
25250505
22
o0

%
2
o5

g

KX

920

Explicit: env.

variability

+ Implicit

Both (Env.=2»Sys.)
and (Sys.=Env.)
influences

|

== Inaccurate
effector

Effector failure

—> e-1) Env. variability

' Env. change
responding to

sys. operation

Autonomous

env. change

35 Enumeration of
possible states

Figure 2.14: Representations of the SAS environment characteristics in the models

modeling for SAS as follows:

RQ6, we found that every model had a unique expression for the characteristics of the environment
depending on the perspective, and we showed the trends of those expressions in this work.

Finally, we also identified some research challenges and limitations of the existing environment

e Limited consideration of various environmental characteristics: Few papers systematically identi-

fied the characteristics of the SAS environment prior to this work, so the various characteristics of



the environments were often not explicitly expressed. Future modeling should reflect the diverse

characteristics and perspectives of the SAS environment.

e Limited consideration of various sources of environmental uncertainty: Although there are various
sources of environmental uncertainty, existing models did not represent them comprehensively.
Future research should also address complex environmental uncertainty in which various sources

are combined.

e Considerable manual effort and domain knowledge required for modeling: Adaptations based on
environment models are increasing, but they still rely on manual models and domain knowledge.
For the effective use of the environment model, additional research on automated or data-driven

model generation is needed.

2.6 Comparison of Related Works and the Thesis

This section introduces environment modeling approaches related to our environment modeling
approach that was collected in Chapter 2.

The environment models used to verify the goal achievement of the CPS controller under analysis
in the physical environment often represent how the environmental state changes by the CPS actions.
Figure 2.15 shows the definition of environment model for CPS goal verification. The environment model
is the transition function of the state observed by the CPS controller. The state is an environmental
state that is sensed through the CPS sensors. Because the CPS operates in the physical environment, the
sensed environmental state represents the CPS state in the environment. Based on the observed state,
the CPS controller decides on an action. The next state is decided on the current state and current CPS
action. Therefore, the environment model abstracts the state transition, so the environment model can

also be called a state transition function.

Current
state 8¢
Environment model
Current f(dg, ap) = deyq Next
action actuate sense state
a; St+1

CPS controller

Figure 2.15: Environment model for CPS goal verification

In the SLR of Chapter 2, 14 reference environment models were collected. Among them, we found
eight environment models representing the state’s transition function observed by the CPS controller.
This section introduces the eight environment modeling approaches.

A. Reichstaller, et al. proposed a testing environment in which human testers can dynamically
interact with the system [38]. The environment model is given the action of the system under test and
returns the next state of the system and a reward that quantifies the testing criteria satisfaction. The

interaction between the environment and the system under test is modeled as a closed-loop interaction,

25



but the human testers can also inject testing actions during the system execution. This study provided
the testing environment framework, but the engineers should adopt a domain-specific environment of the
system, and not a domain-general solution for the environment modeling is provided.

W. Yang, et al. proposed an environment model that represents sequential state transition of the
CPS, such as a robot vehicle [39]. The purpose of the environment modeling is the realistic consideration
of the environmental constraints during the formal verification of the CPS behavior. Engineers model how
the environmental state is changed after a specific CPS action is executed. In addition, the environmental
uncertainties, such as the sensor noise or the unexpected consequence of a CPS action, are explicitly
specified in the state transition.

Y. Qin, et al. proposed a model representing the interaction between the CPS and environment
[27]. The model explicitly embraces the concept of environmental uncertainties. The first uncertainty
specified in the model is the wrong recognition of the environmental state by the CPS. The second
uncertainty specifies the unexpected effect of the CPS actuation on the environmental state. This
model comprehensively captured uncertain interaction between the CPS and its physical environment.
However, the environment model is conceptual, so engineers are needed to utilize a high-fidelity simulator
to concertize the environment model in practice.

Z. Ding, et al. modeled the environmental state transition using an extended Petri-Net [24]. The
environmental state transition and the CPS action decision model are tightly coupled in a single Petri-
Net model. When the skeleton of the Petri-Net model is developed, the details of the model can be
automatically learned to form the operation data. However, modeling the initial Petri-Net model still
requires expert-level knowledge of both Petri-Net language and the interaction between the CPS and the
physical environment.

Moeka Tanabe, et al., and D. Sykes, et al. modeled the state transition of the CPS using a state
machine [40, 28]. A state is modeled as an environmental state, and the transition between the states
is triggered by the CPS’s actions. The model is used to abstract the high-level behavior of the CPS
because there is a state explosion problem in the state machine.

J. Camara, et al., and G. A. Moreno, et al. modeled the environment state transition model using
Markov Decision Process (MDP) [41, 42]. The environment model MDP is implemented in PRISM model
checker language. The models were used to predict the next state of the environment affected by the
system action for the better runtime decision-making of the system. The structure of the environment
model is made by engineers, but the time-series forecasting algorithms automatically calculate concrete
values in the MDP environment model.

The next section discusses the limitations of these related environment models from the perspectives
of the challenges of the environment modeling described in Chapter 1. We compared the related
environmental modeling approaches based on the challenges of manual modeling mentioned in Chapter 1
in Table 2.10.

From the perspective of the modeling of a complex environment, all existing approaches can model
the environmental state as a discrete state by significantly abstracting the environment to reduce the
complexity. Some approaches can represent continuous environmental state variables to represent more
complex environments. In addition, some models also expressed environmental uncertainty, such as
inaccurate monitoring of the state of the environment on the system and stochastic state variations.

From the compounding error problem perspective, in most approaches, small errors are accumulated
during the long simulation. It makes it difficult to perform an accurate simulation. Therefore, engineers

can simulate most models only for small simulation time steps. The environment models should be

26



updated for each simulation time step for long-term simulation. Some models are proposed for long-term
simulation, but the approaches assume domain experts give an accurate environment model.

From the manual modeling effort perspective, most modeling approaches assume or require expert-
level domain knowledge for accurate environment model generation. For example, the concrete environ-
mental state transition should be given as a function or many rules. Some models require engineers to
design the environmental state transition mechanism skeleton. However, the requirement is unachievable
to human engineers when the CPS and its environment are very complex. Some modeling approaches
provide some data-driven automation methods to learn some part of the environment model, but large

manual effort is still required for modeling.

Table 2.10: Limitations of the related works

Modeling | Complex environment modeling | Solving Manual modeling effort
approach ) ) compounding | Required )
Continuous Environmental ) Data-driven
) ) error domain )
state variable | uncertainty . automation
expertise
[38] (0] X ] High None
[39] X (0] 0] High None
[27] 0O 0O 0] High None
Partial
[24] 0 0 X High arta
(Petri-Net learing)
. Partial
[40] X X X High
(Differential learning)
Partial
[28] X 0 X High arta
(Rule learning)
. Partial
[41] X (@) X Medium
(Simple data analysis)
Partial
[42] X 0 X Medium |
(Simple data analysis)
Largel
This 0 0 0 Low ey

(Imitation learning)

Our approach automatically generates the environment model using Imitation Learning (IL) com-
pared to the related environment modeling approaches. It only requires little domain knowledge to define
the environment model’s input and output. The environmental state transition mechanism is learned
from solely CPS operation data. In addition, the generated model represents an environmental state
as a continuous variable, and the environmental uncertainty, such as sensor noise, is embraced in the
environment model. The environment model is generated for the long-term simulation of solving the

compounding error problem.

2.7 Summary

In this chapter, we introduced CPS and environment modeling. We described the CPS and its con-

troller of this thesis’s interest and compared the concept of CPS with the related system types (i.e., SAS

27



and SoS) to comprehensively understand CPS. In addition, we systematically surveyed the environment
modeling studies. Based on the SLR results, we concertized the concept of the environment and analyzed
some related environment models. Finally, we compared the environment models abstracting the state
transition of the real environment based on the challenges of the manual environment modeling to show
their limitations comparing to the thesis. In summary, the related environment modeling approaches
are not appropriate to model the complex environment, be used for the long-term simulation, and be
used with less domain knowledge. We will provide a novel model generation approach to solving the

challenges of manual environment modeling in the following chapters.

28



Chapter 3. Formal Framework of CPS Goal Verification

3.1 Introduction

This chapter introduces a mathematical framework for modeling how the CPS under analysis in-
teracts with its environment to achieve its goals. First, the interaction between the CPS controller and
its environment is modeled. Second, embracing the model, we define the formal framework of CPS goal
verification. Third, based on the formal framework of CPS goal verification, we formally define the
environment model generation problem of this thesis. The formal problem definition can be also shared

to the related environment modeling studies.

3.2 CPS-Environment Interaction Model

Road (Enwronment)

Distance
to lane
center
(state”)

Steering
angle
(action)

Lane-keeping
vehicle (CPS)

Figure 3.1: Closed loop interaction between CPS and environment

In this section, we first formally model the interaction between the CPS controller and its operational
environment. To limit the scope of modeling and divide the modeling concerns, in this dissertation, we
assume the CPS and the environment interact with each other in a closed loop. This means that there is
no external factor that affects to the CPS and the environment. Only the CPS affects the environment,
and only the environment affects the CPS. In short, we call the interaction CPS-ENV interaction.

Figure 3.1 shows an example of the CPS-ENV interaction. Here the CPS controller is the lane-
keeping system of an autonomous vehicle, and the environment is the road observed by the lane-keeping
system. The lane-keeping system observes the vehicle’s state by sensing its road environment. Especially,
it observes the distance to the lane center. Based on the observed data, it decides a steering angle towards
the lane center. The steering angle is actuated and finally triggers change in the distance to the lane
center that will be observed at the next time step.

Like the example above, a CPS achieves its goals by interacting with its physical environment.

29



Specifically, starting from an initial state of the environment, the CPS software controller observes the
state and decides an appropriate action to maximize the likelihood of achieving the goals. Then, taking
action causes a change in the environment for the next step, which the CPS will observe again to decide
an action for the next step. To formalize this process, we present a novel CPS-ENV interaction model
inspired by Markov Decision Process [43] that models an agent’s sequential decision-making process

under observation over its environmental states.

Environmental state transition function
6:AXS—>S

Action State

acA

CPS policy function
TS - A

Figure 3.2: CPS-ENV interaction model

Specifically, a CPS-ENV interaction model is a tuple M = (S, A, 7,0, s9) as shown in Figure 3.2,

where

e S is a set of observable states of the environment under consideration, A is a set of possible CPS

actions,
e 7m:5 — Ais a policy function that captures the software controller of the CPS,

e §:S5x A — S is a transition function that captures the transitions of environmental states over

time as a result of CPS actions and its previous states',
e and sg is an initial environmental state.

For example, starting from sg, the CPS makes an action ag = w(sg), leading to a next state s; = §(sg, ag).
By observing s1, the CPS again makes the next action a; = 7(s1), and so on.

In the CPS-ENV interaction model M, S and A are defined by the CPS sensing and actuating
capability. S is limited by the sensors equipped in the CPS. If a sensor can observe an external integer
variable ranging from 1 to 100, then the S = {1,2,...,99,100}. If there are multiple sensors, an s € S
is a vector including multiple sensing variables. In the same way, an a € A is also a vector of actuating
variables of the CPS. Therefore, the size of S and A is proportional to the number of sensing and

actuating variables and the ranges of the variables.

1Though we use deterministic policy and transition functions for simplicity, they can be easily extended in terms of

probability density, i.e., 7: S x A —[0,1] and § : S X A X S — [0, 1], to represent stochastic behaviors if needed.

30



Based on the S and A defined by the CPS’s sensing and actuating capability, the = and ¢ are the
functions abstracting the CPS controller and the environmental state transition. Here, the 7 is the
software controller under development, so the 7 is an engineering artifact. On the other hand § is a
mathematical representation of the real environment, so it just abstract an unknown state transition
observed by the CPS controller. Therefore, § represents the ‘environment model’ in this dissertation.

Based on the CPS-ENV interaction model, we formally define how the CPS controller interact with

the environment and what the ‘environment model’ in this dissertation means.

3.3 Formal Framework of CPS Goal Verification Process

In this section, we introduce the formal framework of CPS goal verification process using the CPS-
ENYV interaction model M defined in the previous section. It formally abstracts the typical process of

statistical CPS goal verification.

Road (Environment) Execution L
v i ‘ & Log data Statistical
= \ Dist data ) Data Result
i Istance i ' analysis -
Staenegrire‘g to lane collection time |distance |angle vl Max(dlStance)
(action) centgr :> |—> ~N{u = x,
@ (state”) o2 = y}
Lane-keeping Goal specification
vehicle (CPS) <Safety goal>

Minimize “maximum displacement™
(evaluation metric: Max(distance)

Figure 3.3: An example of CPS goal verification process

The CPS goal verification process is summarized as follows as shown in Figure 3.3. The engineer
develop CPS controller first and run it in the environment. For example, suppose there is an engineer
developing a lane-keeping system of an autonomous vehicle. The lane-keeping system is defined as a
system in which the car receives the distance from the center of the lane as input and determines the
angle of the steering. The determined angle controls the car and it makes a change in the next state
of the vehicle. The Lane-keeping system repeats this process to control the car. The CPS controller
collects driving data that records the states and actions. This driving log data is the time series data
of the environmental state observed by the CPS for each time stamp and the CPS actions determined
by it. The accumulated driving log data is analyzed to assess the goals of the vehicle. For example,
the engineer can quantitatively evaluate the safety goal of the lane-keeping system, minimizing the
“maximum displacement” from the center of the lane. The result is a statistical analysis result of the
goal evaluation metric.

We define a formal framework of the CPS goal verification process as shown in Figure 3.4. For a
CPS-ENYV interaction model M = (S, A, 7,0, s0), we can think of a sequence of transitions sg 200 5
So 22y . gnoly Sp over n steps where s;_1 e s; denotes a transition from a state s;_; to another
state s; of the environment by taking an action a;_; of the CPS. More formally, we define a trajectory
of M over T time ticks as a sequence of tuples tr(M,T) = ((so,a0),- .., (sT,ar)).

Since a trajectory of a CPS-ENYV interaction model concisely captures the sequential interaction

between the CPS under analysis and its environment, one can easily verify whether CPS goals are

31



Environmental state transition function
GAXS—>S
/ Execute for

. /1 - 3 2 ‘
e T-times Verify

) on M State :> Trajectory tr(M,T) = ::> Verification result
CPS—E/\I\/mteract/n I SES ((s0,a0), (51, a1), .., (57, 1)) Y(M, P)

Action
acA

Goal specification ¢b
CPS policy function

mS - A

Figure 3.4: Formal framework of CPS goal verification process

achieved or not by analyzing the trajectory. Specifically, let ¢ be a requirement that precisely specifies
a goal under verification. The achievement of ¢ is quantifiable. For a CPS-ENYV interaction model M,
the verification result of ¢ for M, denoted by (M, ¢), is computed by evaluating the achievement of ¢
on the trajectory of M.

Depending on the type of ¢, the value of ¥(M, ¢) can be Boolean (expressing the success or failure
of a requirement with clear-cut criteria) or Float (expressing the measurement of an evaluation metric
of ¢). For example, one of the evaluation metrics of the lane-keeping requirement is the distance the
vehicle is away from the center of the lane. As a result of the verification of the lane-keeping goal, the

average or maximum distance from the center is computed.

3.4 Problem Definition of the Environment Modeling

3.4.1 Original Definition

Using the formal framework of CPS goal verification process, This section formally defines the

problem of environment model generation of this thesis.

(As-Is) FOT-based approach (To-Be) Simulation-based approach

CPS-ENV interaction M, CPS-ENV interaction M,

Real environmental statepmmess
transition function
0, AXS—S

| Virtual environmental state
transition function
0,,AXS—>S

.
.

Verification result Verification result
—
(M, ) make as close Y(My, p)
as possible

Figure 3.5: Formal problem definition of the environment model generation
The formal problem definition of the virtual environment model generation for CPS goal verifi-

cation in this thesis is shown in Figure 3.5. The problem of virtual environment model generation

for simulation-based CPS goal verification is to find an accurate virtual environment model that can

32



replace the real environment of the CPS goal under verification while maintaining the same level of
verification accuracy. Specifically, for the same CPS under analysis, let a CPS-ENV interaction model
M, = (S, A, 7,0,,s0) representing the interaction between the CPS and its real environment (in FOT)
and another model M, = (S, A, r,d,,S0) representing the interaction between the same CPS and its
virtual environment (in simulations). Notice that we have the same S, A, 7, and s, for both M, and
M, since they are about the same CPS?, whereas 6, and 6, are different since they represent how the
corresponding environments react to the actions performed by the CPS. For a requirement ¢, we aim to
have ¢, that minimizes the difference between 1)(M,., ¢) and (M, ¢). Therefore, the problem of virtual
environment model generation for CPS goal verification is to find d, such that [¢(M,, ¢) — (M, ¢)| is
the minimum.

The virtual environment model generation problem has three major challenges. First, the number of
possible states and actions is often very large, making it infeasible to build a virtual environment model
(i.e., represented by a transition function ¢, : S x A — S) by exhaustively analyzing individual states and
actions. Based on the definition of § : S x A — S, denoting n(S) and n(A) as the number of elements in S
and A respectively, n(S) x n(A) transitions must be defined to have a complete transition function. The
more possible environmental states and CPS actions, the more difficult defining all transitions completely.
In addition, ¢, should be close to §,., which is unknown to engineers.

Second, since the virtual environment model continuously interacts with the CPS under analysis in
a closed-loop, even a small difference between the virtual and real environments can significantly differ
in verification results as it accumulates over time, the so-called compounding error problem introduced
in the introduction chapter of this dissertation. This means that simply having a transition function 4,
that mimics the behavior of §, in terms of individual input and output pairs, without considering the
accumulation of errors for sequential inputs, is not enough.

Third, generating J, should not be as expensive as using many FOTs; otherwise, there is no point in
using simulation-based CPS goal verification. Recall that manually crafting virtual environment models
in a high-fidelity simulator requires a lot of expertise, which takes longer than doing FOTs many times
for having statistically significant verification results. Therefore, a practical approach should generate
an accurate virtual environment model efficiently and automatically.

To address the challenges mentioned above, we suggest leveraging IL to automatically generate
virtual environment models from only a small amount of data. The data is the partial trajectory of M.,
which can be collected from a few FOT's for the CPS under test in its real application environment. Since
IL can efficiently extract how experts make sequential actions for given states from a limited amount of
demonstrations while minimizing the compounding errors, it is expected to be an excellent match to our
problem. Therefore for our problem, IL will extract ¢,, instead of 7 (which is the original goal of IL),
that can best reproduce given trajectories of M, (i.e., FOT logs). Generated ¢, may differ depending on
the amount of the trajectory, so we analyze it in the experiment.

The proposed data-driven environment model generation using IL will be introduced in the following

chapter.

3.4.2 Extended Definition

The problem definition introduced above formally specifies the goal verification process of a CPS

controller 7 and the role of a virtual environment model §,. In this section, we extend the original

2Note that S can be the same for M, and M, because it is a set of observable states from the perspective of the CPS

under analysis.

33



problem definition based on an assumption that the controller 7 is a configurable software embracing some
configurable variables influencing the controller behavior. The original problem definition is subsumed
in the extended problem definition.

The controller 7 is a software module that controls the CPS action according to the observed
environment. Software engineers can develop the software controller with various control mechanisms
like rule-based approach, PID controller-based approach, or machine learning-based control. In many
cases, the engineers implement the control software with some configurable parameters that change the
behavior of the controller. The engineers then optimize the configurable parameters (i.e., configuration)
to better achieve the CPS goals. In other words, the engineers analyze and verify many CPS controller
variations discriminated by the configuration setting then search the best setting to develop an optimized
CPS controller.

Adaptive cruise control system Variability model
def accs_pid_control(front_distance): ACCS

const 7o Be [_Accs ]

const_i = 0 A configuration 0 model PID controllor

const_d = 0.3 configs.

driving speed = PID(const_p, const_i, <quantitative var> || < quantitative var> || <quantitative var>
const d - ) const_p const_i const_d

return driving_speed 106, . 1.8] [0, .2l 10, 251

A formal definition of a controllervmm 7.[9 | 9 = @ met of all possible configs. ©

Figure 3.6: An example of configurable CPS controller

Figure 3.6 shows an example of a configurable adaptive cruise control system controller. The con-
troller can be developed based on a PID controller which is one of the most widely used control strategy.
The controller observes distance to the front vehicle and calculates driving speed to manipulate a vehicle.
To calculate the driving speed, PID controller requires three constants that tune propositional, integral,
and derivative controllers respectively. In this case, the sequence of three constants is a configuration,
denoted by 0. All possible configurations of engineers interest can be described in a variability model
shown in the right side of the Figure. Based on the model, a set of all possible configurations © is de-
fined, and the controller configured by 6, an element of © is a specific controller variation, denoted by my.
Suppose the engineers verify all CPS controller variations of interest with the environment model-based
simulation described in the original problem definition. For this purpose, the original problem definition
is extended.

Specifically, mg : S — A is a CPS software controller configured by a configuration 6 that denotes
the controller’s variability point [44], where S is a set of environment states and A is a set of controller
actions. is a sequence of quantitative, user-configurable variables [44] of the CPS software controller.
(Note that the qualitative variables of 6 are currently outside of our scope.) A quantitative variable
can be either discrete or continuous [44], and the continuous variable can also be discretized by an unit
interval. 6 concisely specifies a certain version of n’s decision-making logic, with the fixed possible input
set S and output set A of w. Specifically, given two different #; and 6s, both g, : S — Aand 7y, : S — A,
but the decided CPS actions a; < mp, (s) and a2 < 7y, (s) may be different for the same input s € S.

We call controllers with different configurations (e.g., mg,,mg,,...) as variations of 7. Engineers
can change 6 to make another variation my under verification for specific engineering purposes, such as

adaptation, optimization, repair, or evolution of . We define a set of all possible s © (i.e., § € O).

34



In many cases, © of a CPS controller is an infinite set because of the unlimited range or the continuity
of a user-configurable variable. However, in practice, © under consideration is defined as a finite set by
domain knowledge or constraints, so we will assume © is defined finitely in this study. Therefore, the
engineer’s goal is to verify all variations of 7 configured by 6 € © as efliciently as possible.

Here, we investigate whether an environment model 4, can be used to verify 7’s variations (i.e.,
{mg|0 € O©}) that had not been used for the seed log collection of §, so that the engineers can *efficiently*
verify all variations by collecting as small seed logs as possible by FOTs. To formally define the problem,
we first extend the notations of our CPS-ENV interaction model M.

o M, = (S,A,mg,0,,00) denotes CPS-ENV interaction between the real environment ¢, and the
CPS controller 7 configured by 6.

e Let O be the set of 7’s configurations used for generating a set of seed logs (training data) tr

(i.e., tr is generated by monitoring 7y for 6 € ©y,.).

® Mo = (S, A, g, 0tr,00) denotes CPS-ENV interaction between the virtual environment ;. gen-

erated using tr.

Using the extended notations, we define a problem of the virtual environment model generation for

verification of CPS controller variations below.
e Suppose the finite set of CPS controller configurations under analysis © is given.
e A subset O C © indicates CPS controllers {my|0 € O} used for seed log collection by FOTs.
e A method models or generates a virtual environment model d;, using the seed logs of {my|0 € ©y,.}.

e Given CPS goal under verification ¢, we aims to minimize both (a) > ycq |¥(| Mg, ) =0 (| Mo, ¢)|
and (b) |O¢|.

Note that a controller variation my whose 6 ¢ Oy, is a controller whose behavior is never seen to dy,
so we call my|0 ¢ Oy unseen CPS controller variation. (a) The point is to make the simulation-based
CPS goal verification result as similar as possible to the FOT-based verification result for all (i.e., both
seen and unseen) controller variations. (b) At the same time, the smaller number of the CPS controller
variations under FOT for seed log collection |©y,|, the less laborious cost of CPS goal verification.

The extended problem definition subsumes the original problem definition. Specifically, if there is
only one configuration under analysis or a controller is not a configurable controller so an engineer has
only one unique controller under analysis, we can say © = {#;} and |©| = 1. In this case which there
is only one ¢ under analysis, ;¢ of extended problem definition is always same with §, of the original
problem definition. In summary, the original problem definition is extended for cases when there are
more than two controllers (i.e., controller variations) under verification, so the original and extended

problem definitions are the same when there is only one controller variation under verification.

3.5 Summary

In this chapter, we proposed CPS-ENYV interaction model that formally abstracts the continuous
interaction between a CPS controller and its environment. Using the model, we also proposed a formal
framework of the CPS goal verification process. Based on the formal framework, we formally defined the

problem of the environment model generation for CPS goal verification.

35



Chapter 4. Data-Driven Environment Model Generation

4.1 Introduction

To solve the difficulty of manually generating virtual environment models, we propose an automated
data-driven environment model generation approach for CPS goal verification by recasting the problem
of environment model generation as the problem of imitation learning. We call this novel approach
ENVironment Imitation (ENVI). In machine learning, Imitation Learning (IL) has been widely studied
to mimic complex human behaviors in a given task only from a limited amount of demonstrations [45].
Our approach leverages IL to mimic how the real environment interacts with the CPS under analysis
from a small set of log data collected from FOTs. Since the log data records how the CPS and the real
environment interacted, our approach can generate an environment model that mimics a state transition
mechanism of the real environment according to the CPS action as closely as possible to that recorded
in the log data. The generated environment model is then used to simulate the CPS software controller
as many times as needed to statistically analyze the CPS goal achievement. Specifically, this chapter
provides a systematic process and user-configurable parameters of ENVI.

In summary, this chapter introduces:
1) the detailed explanation of the process of our approach ENVI,
2) two environment model structures of ENVI,

3) three ENVI environment model generation algorithms extending three representative IL algorithms
(BC, GAIL, and BCxGAIL),

4) and three quantitative best model selection criteria for validating the environment model made by
ENVI

The remainder of this chapter is organized as follows. Section 4.2 illustrates a motivating example.
Section 4.3 provides background on IL. Section 4.4 shows the overview of ENVI. Section 4.5 proposes
ENVI process in detail.

4.2 Motivating Example

In this section, we present a simple example of CPS goal verification to demonstrate a use case of
our approach.

Consider a software engineer developing a lane-keeping system of an autonomous vehicle. The engi-
neer aims to develop and test the vehicle’s software controller (i.e., lane-keeping system) that continuously
monitors the distance from the center of the lane and computes the steering angle that determines how
much to turn to keep the distance as small as possible.

Once the software controller is developed, the engineer must ensure that the vehicle equipped with
the controller continues to follow the center of the lane while driving. To do this, the engineer deploys
the vehicle on a safe road and collect an FOT log, including the distance d; and the steering angle a; at

time ¢t = 1,...,T where T is a pre-defined FOT duration. Based on the collected data, the engineer can

36



quantitatively assess the quality of the lane-keeping system by calculating the sum of the distances the
vehicle deviated from the center of the lane, i.e., ¥1_,|d;|. The quantitative assessment is used to verify
precisely a goal of the system, i.e., whether X7 ;|d;| < € holds or not for a small threshold e. Notice
that, due to the uncertainties in FOT, such as non-uniform friction between the tires and the ground,
the same FOT must be repeated multiple times, and statistical analysis should be applied to the results.

It takes a lot of time and resources to repeat the FOTs enough to obtain statistically significant
results. To address this issue, the engineer may decide to rely on simulations. However, using high-
fidelity and physics-based simulators, such as Webots [46] or Gazebo [47], is very challenging, especially
for software engineers who do not have enough expertise in physics. It is not easy to accurately design
the physical components of the system (e.g., the size of wheels and the wheelbase) and the road in the
simulator so that the simulation results are almost identical to the FOT results.

Our approach, ENVI, enables the CPS goal verification without using such a high-fidelity simulator.
The engineer can simply provide ENVI with the software controller (i.e., the lane-keeping system under
analysis) and a small amount of FOT logs collected from the beginning, which is far less than the
data required for statistically significant results using FOTs. Then ENVI automatically generates a
virtual environment model that imitates the behavior of the real environment of the lane-keeping system;
specifically, the virtual environment model can simulate dy41 for given d; and a; for t = 2,...,T such
that X7_,|d;| calculated based on the virtual model is almost the same as the value calculated based
on the FOTs. Therefore, by quickly re-running the simulation multiple times, the engineer can have
statistically significant results about the quality of the software controller at little cost. Furthermore,
if multiple software controller versions make different CPS behaviors, the virtual environment model
generated by ENVI can be reused to verify the CPS goal achievements of new controller versions that
have never been tested in the real environment.

The challenge for ENVI is automatically generating a virtual environment model that behaves as
similar as possible to the real environment using a limited amount of data. To address this, we leverage

imitation learning detailed in the following section.

4.3 Background: Imitation Learning

This section provides background knowledge of imitation learning that is required to understand
the following sections.

Imitation Learning (IL) is a learning method that allows an agent to mimic expert behaviors for a
specific task by observing demonstrations of the expert [45]. For example, an autonomous vehicle can
learn to drive by observing how a human driver controls a vehicle. IL assumes that an expert decides
an action depending on only the state that the expert encounters. Based on this assumption, an expert
demonstration is a series of pairs of states and actions, and IL aims to extract the expert’s internal
decision-making function (i.e., a policy function that maps states into actions) from the demonstra-
tion [45]. We introduce two representative IL algorithms in the following subsections: Behavior Cloning
(BC) and Generative Adversarial Imitation Learning (GAIL).

4.3.1 Behavior Cloning

Behavior Cloning (BC) infers the policy function of the expert using supervised learning [48, 49].

Training data can be organized by pairing states and corresponding actions in the expert’s demonstration.

37



Then existing supervised learning algorithms can train the policy function that returns expert-like actions
for given states. Due to the simplicity of the BC algorithm, BC can create a good policy function that
mimics the expert quickly if there are sufficiently much demonstration data. However, if the training data
(i.e., expert demonstration) does not fully cover the input state space or is biased, the policy function

may not mimic the expert behavior correctly [49].

4.3.2 Generative Adversarial Imitation Learning

Generative Adversarial Imitation Learning (GAIL) [50] utilizes the idea of Generative Adversar-
ial Networks [51] to evolve the policy function using iterative competitions with a discriminator that
evaluates the policy function. Therefore, both the policy function and the discriminator are trained in
parallel.

The policy function gets states in the expert demonstration and produces simulated actions. The
discriminator then gets the policy function’s input (i.e., states) and output (i.e., simulated actions) and
evaluates how the policy function behaves like the real expert, as shown in the demonstration. The more
similar the simulation is to the expert demonstration, the more rewarded the policy function is by the
discriminator. The policy function is trained to maximize the reward from the discriminator.

On the other hand, the discriminator is trained using both the demonstration data and the simulation
trace of the policy function. The state and action pairs, which is the input and output of the policy
function, in the demonstration data are labeled as real, but the pairs in the simulation trace are labeled
as fake. A supervised learning algorithm trains the discriminator to quantitatively evaluate whether a
state and action pair is real (returning a high reward) or fake (returning a low reward).

After numerous learning iterations of the policy function and the discriminator, the policy func-
tion finally mimics the expert well to deceive the advanced discriminator. GAIL uses both the expert
demonstration data and the simulation trace data of the policy function generated internally, so it works
well even with small demonstration data [50]. However, because of the internal simulation of the policy

function, its learning speed is relatively slow [52].

4.4 Environment Imitation Overview

This section provides ENVI, a novel approach to the problem of environment model generation for
CPS goal verification, defined in Chapter 3. We solve the problem by using IL to automatically infer a
virtual environment state transition function from the log recorded during the interaction between the
CPS under test and its application environment. The original IL aims to generate (train) the system’s
policy function 7 in a given environment, but we leverage IL for ENVI with the aim of generating
the environment 4, of the CPS software controller under analysis. In this context, the real application
environment is considered an “expert,” and the FOT log demonstrates the expert.

Figure 4.1 shows the overview of the environment model generation and simulation-based CPS goal
verification process using our approach. It is composed of five main stages: (1) collecting seed logs from
FOTs, (2) defining an environment model structure based on environment characteristics, (3) training
environment models from the seed logs using an IL algorithm, (4) selecting the best environment model,
and (5) verifying the given CPS goals using the best environment model. Each of the stages is detailed

in the following sections.

38



CPS controller

\ 4 Model structure
—{ 1. Collecting seed logs ) [__2.1. deterministic model
% Env. characteristics E 2.2. nondeterministic model
g [ 2. Defining an env. model structure ]4—’5 S =|Ii=aGo:t:rh= e
L ¢ Model structure | 3.1.BC I
> 3. Training env. models Je 3.2. GAIL :
¢ Trained env. models i 3.3. BCGAIL )
4. Selecting the best env. model Jo — === === ===
¢ Best env. model i Sjlﬁczli?cﬁzlézza
_r»[ 5. Verifying GPS goals ] L 4.1. Euclidean distance
CPS goals Verificat;n ey 4.1. Dynamic time warping

Figure 4.1: ENVI: Overall process and parameters

4.5 Environment Imitation Process

4.5.1 Stage 1: Collecting Seed FOT Logs

FOT dfration

— —_—
Time 1 2 3 4 5 6 | w |Ta|T3|T2|T1| T [
Distanceto | ;5 1 561 0.05 | 0.15 | 045 | 0.45 1.2 |-145[-145| -09 | -03 [H
lane center (m) L
State §—4 it
Distance front| | g5 | g5 | 73 | 65 | 57 51 | 50 | 49 | 51 | 50 [L
vehicle (m) L]
Sme"?.,g)a“glc 10 | <10 | 10 | 10 | 10 | 10 410 | <10 | -10 | <10 | -10 |
Action a— H
Driving speed H [
90 | 80 | 80 | 70 | 60 | 50 40 | 40 | 40 | 40 | 40 [H
\ (m/s) |
[ ISy | I | [ | | | | | | | [
| UIVST | [ I | [ I | I I I I I
| (/ST | [ I | [ | | | | | | I

Figure 4.2: CPS FOT log example

The first stage of ENVI is to collect the interaction data between the CPS controller and its real
environment, which will be used as the “demonstrations” of imitation learning to generate the virtual
environment later. For a CPS-ENV interaction model M, = (S, A, ,J,,so) defined in Chapter 3, the
interaction data collected over time T can be represented as the trajectory of M, over T steps, i.e.,
((s0,a0),(81,01),-..,(s7,ar)) where s;y11 = 6,(st,a¢) and a; = w(sy) for t € {0,1,...,T — 1}. The
trajectory can be easily collected from an FOT, since it is common to record the interaction between
the CPS controller and its real environment as an FOT log [53]. For example, the lane-keeping system
records time-series data of the distances the vehicle deviated from the center of the lane d; and the
steering angles a; over t = 0,1,...,T during an FOT. The example of CPS FOT log is visualized in
Figure 4.2.

In practice, the trajectory of the same M, is not necessarily the same due to the uncertainty of the

39



real environment, such as the non-uniform surface friction. Therefore, it is recommended to collect a few
FOT logs for the same M,.. Since the virtual environment model generated by imitation learning will
mimic the given trajectories as much as possible, the uncertainty of the real environment recorded in the
trajectories will also be imitated. Chapter 5 will investigate to what extent virtual environment models
generated by ENVI can accurately mimic the real environment in terms of CPS goal verification when

the size of the given FOT logs varies.

4.5.2 Stage 2: Defining Environment Model Structures

The second stage of ENVI is to generate a virtual environment model from the collected seed
logs using an IL algorithm. To generate the environment model, the engineer should first define the
environment model structure.

We implement an environment model as a neural network to leverage imitation learning. Before

training the environment model, users define the neural network structure.

Hidden layer

Input layer E Output layer
""""""" o Output y
If | St+1
History | ENV state
Ix (Is| +|a))< | |s|
i . l :history length
! |s|: ENV state
Input x . vector length

|a]: CPS action
vector length

[/ :data

((St—i+1) Ae—141),

ey B}

user-specific

Figure 4.3: Deterministic environment model structure

The virtual environment model structure is based on the environmental state transition function
§: S xA— S defined in Chapter 3. It assumes that the ideal (real) environment generates the next
state s;y1 € S by taking the current environment state s; € S and the current CPS action a; € A only,
meaning that (s;,a¢) is sufficient to determine s;y; in the ideal environment at time ¢. However, in
practice, s may not include sufficient information since it is observed by the sensors of the CPS under
verification and the sensors have limited sensing capabilities. To solve this issue, we extend ¢ for virtual
environment models as 6, : (S x A)! — S where [ is the length of the state-action pairs required to predict
the next state. This means that d, uses ((St—i+1,@t—i41);-- -, (St,a¢)) to predict s;11. Notice that 4, is
equal to 6 when [ = 1. To account for the extension of §, we also extend the CPS-ENV interaction model

M = (S,A,m,0,s0) to M, = (S, A,7,dy,00) where g = {(s0,a0),-..,(Si-1,a;—1)) is a partial trajectory

40



Hidden layer

Input layer | Output layer Output y

- ~ :

i M §t+1

3

ENV state
Is]

Sampler

I
History E
Ux (|s| +a)< |

l :history length

|s|: ENV state
vector length

|a|: CPS action
vector length

D : data

Input x ~

((Sg—tr1, Ap—ps1)

e (St! a’t))

Figure 4.4: Nondeterministic environment model structure

of M, over [ steps starting from sg. Intuitively speaking, o¢ is the initial input for ¢, similar to so (and
ap = m(sp)) for 4.

The history length [ affects the information captured in environmental states; the larger [, the more
information. However, having more information decreases the training and execution time of §,. To
better balance between the amount of information and the computation cost, one can investigate the
seed logs to obtain environment characteristics; for example, if there is a cyclic pattern in the seed logs,
[ can be the length of the cycle.

The design of hidden layers in §,, specifies how the output variables of §, are calculated from the
input variables of §,.. It is specific to a domain, but general guidelines of the neural network design exist
for practitioners [54, 55].

After the [ and hidden layers are defined, the determinism of §, should be decided by users. The
determinism is about the choice between simplicity and realism; a deterministic model, which returns
the same output for a given input deterministically, is simpler than a nondeterministic model, which
may return different outputs for the same input, whereas the latter is more realistic than the former
considering the uncertainty of real environments. Specifically, Figure 4.3 and 4.4 show the structures of
deterministic and nondeterministic models, respectively. As defined in Chapter 3, d, : S* x A — S takes
as input ((S¢—j41,01—141),-- -, (8¢, a¢)) and returns §;11 in both structures. However, the neural network
in the deterministic model shown in Figure 4.3 is trained to predict $;11, whereas the neural network
in the nondeterministic model shown in Figure 4.4 is trained to predict a probability distribution
(i.e., a mean p and a standard deviation o) of §;y; assuming that the randomness follows the normal
distribution. The output §;41 of the nondeterministic model is then calculated by sampling from the
distribution using 1 and o. Since most of the uncertainties appearing in CPS log data follow the normal
distribution, the experiments in this paper use the normal distribution sampler. However, an engineer
can use other random distributions if needed for a specific domain.

Either deterministic and nondeterministic environment model structures are mapped with the col-

lected FOT log data as Figure 4.5. The input neurons are mapped with the history data of the CPS

41



actions and environment states, and the final output neurons are mapped with the next environment
state. The environment model defined here is trained using the seed logs collected in the previous stage.

The training process is introduced in the next section.

Time 1 | 23| 4| 5s]|6§ r
- e i i e o I
Distanceto | 451 6 | 0.05 | 015 | 0.43, 0.451
lane center (m)|f \ . |
L L
State § I P :
Distance front (|
vehicle (m) I100 98 85 73 65 |'_57_.| |
Stee"‘gf‘imgleplo 10| 10|10 100 10 |
) |
Action a ' \
Driving speed |' /
(ls) 90 | 80 | 80 | 70 | 607| 50
History @g| &8, structure

Figure 4.5: Mapping of the FOT log data and the environment model structure

4.5.3 Stage 3: Training Environment Models Using Imitation Learning

Once the structure of §, is determined, we can train §, using an IL algorithm with the training
part of seed logs. The seed logs are used as a proper set of training data D = {(X1,Y7),...,(Xn,Yn)},
where n is the number of FOT logs for training, X; is the sequence of §,’s inputs collected from i-th
FOT log and Y; is the corresponding sequence of outputs (i.e., the expected value of 6,(x;) is y; for all
je{l,...,|X;|} and |X;| = |Y;| for i € {1,...,n}). Since x € X is an l-length sequence of state-action
pairs, we can generate D from an FOT log using a sliding window of length [. Specifically, for an FOT
log ((s0,a0), ..., (st ar)), j = ((sj,a;5),..., (s1—j41,a1—;41)) for 5 € {0,..., T — 1+ 1}.

We leverage specific IL algorithms for the environment model generation problem and run the
algorithm to train J, using D. In the following subsections, we explain how each of the representative IL
algorithms, i.e., BC, GAIL, and the combination of BC and GAIL (BCGAIL), can be used for training
Oy -

Note that we only present how BC, GAIL, and BCGAIL can be extended for ENVTI as representative
examples since they are the most widely used IL algorithms. Nevertheless, all 1L algorithms can be
extended for ENVI in general, as long as an IL algorithm is modified for training the environmental state

transition function § : S x A — S from training policy function 7 : § — A, as described in the following.

ENVI BC algorithm

As described in Section 4.3.1, BC trains an environment model §, using supervised learning. Pairs
of the input and output of the real environment recorded in FOT logs are given to 4, as training data,
and ¢, is trained to learn the real environment state transition shown in the training data.

Specifically, the BC algorithm (whose pseudocode is shown in Algorithm 1) takes as input a randomly
initialized environment model §,, and a training dataset D; it returns a set of trained environment models
M.

The algorithm initializes a set of trained environment models M (line 1). The algorithm then
iteratively trains d, using D until a stopping condition (e.g., a fixed number of iterations) is met (lines 2—
9). For each (X,Y) € D, the algorithm repeats the following (lines 3-7): (1) executing d,, on X to predict

42



Algorithm 1: ENVI BC algorithm
Input : ENV model (randomly initialized) d,,
Training data D = {(X1,Y1),...,(Xn, Ya)}
Output: Set of trained ENV models M
1 Set of trained ENV models M < ()

2 while not(stoping_condition) do

3 foreach (X,Y) € D do

4 Sequence of model outputs Y’ + §,(X)
5 Float losspc + getLoss(Y,Y”)

6 dy <+ update(d,, losspc)

7 end

8 M <+ append (M, d,)

9 end

10 return M

a sequence of outputs Y’ (line 4), (2) calculating the training loss losspc based on the difference between
Y" and Y (line 5), and (3) updating §, to minimize losspc using optimization algorithms such as well-
known Adam [56] (line 6). For every iteration of the training the copy of current 4, is saved in M (line 8).
The algorithm ends by returning the trained d,s collected in M (line 10).

Algorithm 1 is intuitive and easy to implement. In addition, the model’s loss converges fast because
it is a supervised learning approach. However, if the training data does not fully cover the input space

or is biased, the model may not accurately imitate the real environment.

Time 1 2 3 4 5 6 T-4 | T-3 | T-2 | T-1 T

Distance to | »#

Jane ¢ 1.2 | -0.6 | 0.05 | 0.15v] 0.45 § 0.45 2 | -145|-1.45 -0.‘7\‘0.3 ]
ane center (m)} I

Distance front{ ;o | g5 | g5 | 73 |l 65 | 57 y 51 | 50 | 490 | 51 (ls0 /xi <BE
vehicle (m) '~ - !
Steering angle | O

16 -10 | -10 10 10 1 10 -10 | -10 | -10 | -10 | -10

Driving speed

1
90 80 80 70} 6) 50 40 40 40 4’0j 4

(m/s) e e T e S H
[ 117 -~ S =t i — m——— I I
L — |‘\I/‘ i T T T T I |\'/ I I Minimize 617 loss = Z?—Olyi — )’;‘ll

X1 Y1 Xn yu

Figure 4.6: ENVI BC algorithm summary

In summary, the ENVI BC algorithm trains the environment model §, as shown in Figure 4.6

ENVI GAIL algorithm

As described in Section 4.3.2, GAIL iteratively trains not only §, but also the discriminator ¢ that
evaluates d, in terms of the CPS controller 7. Specifically, for a state s, ( evaluates ¢, with respect to 4,
(captured by D) by comparing 0, (s, 7(s)) and d,(s,7(s)). To do this, ¢ is trained using D by supervised

learning!, and §, is trained using the evaluation results of C.

1The structure of ¢ is similar to &,, but the input of ¢ is (s, 8y (s, 7(s)) and the output of ¢ is a reward value .

43



Recall that ¢ is another neural network shown in Figure 4.7, whose input is a pair of environment
model input and output data, and output is a reward to the environment model. ( quantitatively
evaluates how similar the simulated environmental state transition, expressed in the pair of model input
and output, is to the real environment state transition. It returns the evaluation result as a reward
(e.g., a high reward for the real environment state transition, but a low reward for the simulated or
fake environment state transition). Therefore, the number of the input neurons of the discriminator is
(I x (|s| + |a])) + |a|, and the number of the output neurons is 1. The hidden layers of the discriminator

also should be defined by users like the environment model.

Hidden layer
Input layer E Output layer

1

1

1
walE

History +
next ENV State

Ux (Is| +la]) + |s]

[ :historylength

|s|: ENV state
vector length

|a|: CPS action
vector length

[/ :data

- s  —

<(St—l+1! at—l+1)r ey (St.ﬁ at))r
§t+1

user-specific

Figure 4.7: The discriminator structure for GAIL

Algorithm 2 shows the pseudocode of GAIL. Similar to Algorithm 1, it takes as input a randomly
initialized environment model ¢, and a training dataset D = (X,Y’); however, it additionally takes as
input a randomly initialized discriminator ¢ and the CPS controller under analysis . It returns a set of
trained virtual environment models M.

A set of trained environment models M is first initialized (line 1). The algorithm then iteratively
trains both §, and ¢ using D and 7 until a stopping condition is met (lines 2-20). To train ¢, for
each (X,Y) € D (lines 3-18), the algorithm executes d, on X to predict a sequence of outputs Y’
(line 4), calculates the discriminator loss lossy indicating how well ¢ can distinguish Y and Y’ for X
(line 5), and updates ¢ using lossq (line 6). Once ¢ is updated, the algorithm trains §, using ¢ and 7
(lines 7-17). Specifically, the algorithm initializes a sequence of rewards R (line 7) and a model input
2’ (line 8), collects r € R for each z’ using 4, 7, and ¢ (lines 9-15), calculates the environment model
loss lossgarr, by aggregating R (line 16), and updates J,, using lossgarr using optimization algorithms
in reinforcement learning [57, 58] (line 17). To collect 7 € R for each z’ (lines 9-15), the algorithm

executes d,, on z’ to predict an output 3’ (line 10), executes ¢ on 2’ and 3’ to get a reward r (line 11),

44



Algorithm 2: ENVI GAIL algorithm

Input : ENV model (randomly initialized) 4.,
Discriminator (randomly initialized) ¢,
Function of CPS decision-making logic ,
Training data D = {(X1,Y1),...,(Xn, Ya)}
Output: Set of trained ENV models M
1 Set of trained ENV models M <

2 while not(stoping_condition) do

3 foreach (X,Y) € D do
// Discriminator training
4 Sequence of model outputs Y’ < §,(X)
5 Float lossg < getDisLoss(¢, X,Y,Y")
6 ¢ + update(C, lossq)
// Environment model training
7 Sequence of model rewards R < ()
8 Model input 2’ + X[0]
9 for | X|—1do
10 Model output 3" + d,(x")
11 Reward r « ((2/,y')
12 R <+ append(R,r)
13 CPS action a + 7(y')
14 a2’ + updateInput(z’,y’, a)
15 end
16 Float lossgair < aggregate(R)
17 8y < update(d,, losscarr)
18 end
19 M «+ append (M, d,)
20 end

21 return M

45



appends r at the end of R (line 12), executes 7 on y’ to decide a CPS action a (line 13), and updates
' ={(s1,a1),(s2,a2)...,(s1,a;)) as &’ = {(s2,a2) ..., (s1,a1), (¥, a)) by removing (s, a1) and appending
(y',a) (line 14). A copy of 4, is temporarily saved in M for each iteration (line 19) and the algorithm
ends by returning M, the set of trained d,s (line 21).

Notice that, to train d,, GAIL uses the input-output pair (z’,y’) simulated by 7 and ¢, in addition
to the real input-output pair (z,y) in D. This is why it is known to work well even with a small
amount of training data [50, 52]. However, the algorithm is more complex to implement than BC, and
the environment model converges slowly or sometimes fails to converge depending on hyperparameter

values.

Discriminator {

X; Y oo

/O

0 FOT data oyo y ox@ > Treal

£; ——f : | ¢y ] |
! Xi Vi L
3e/\S | simtation J[07 (O] > Tmodet |
o/ \o o/ \o T
data N~/ N i
2N v
Maximize &, reward = T, 401 Minimize { Loss = [Fpeal — 1] + [Tnodet — 0] |

Figure 4.8: ENVI GAIL algorithm summary

In summary, the ENVI GAIL algorithm trains the environment model ¢, as shown in Figure 4.8

ENVI BCGAIL algorithm

Notice that BC trains §, using the training data only, but GAIL trains J, using the simulated data
as well; BC and GAIL can be combined to use both training and simulated data without algorithmic
conflict. This idea is suggested by [50] to improve learning performance, and [52] later implemented the
idea as an algorithm BCGAIL.

The BCGAIL algorithm is the same as GAIL in terms of its input and output, and it also trains
both §, and ¢ similar to GAIL. In particular, ¢ is updated as the same as in GAIL. However, 4§, is
updated using both losspe (line 4 in Algorithm 1) and lossgasz (line 15 in Algorithm 2). By doing so,
BCGAIL can converge fast (similar to BC) with a small amount of training data (similar to GAIL).

Specifically, we can implement the BCGAIL algorithm for FNVI by mixing Algorithms 1 and 2.
The input of the BCGAIL algorithm is the same with Algorithm 2. The algorithm iteratively trains both
0, and ¢ until a stopping condition is met. For each training data, the algorithm repeats the following:
(1) training ¢ by Algorithm 2, (2) calculating the BC’s environment model loss by Algorithm 1, (3)
calculating the GAIL’s environment model loss by Algorithm 2, and (4) updating ¢, using the sum of
the losses calculated in the step (2) and (3) to minimize both. The algorithm ends by returning d,.

In summary, the ENVI BCGAIL algorithm trains the environment model §, as shown in Figure
4.9

46



@ @
@) @
Xj —* > Vi xX; — > V;
O/\O @) O/@) @)
O O O @
n
6,BCloss = ) |y; — il 6, GAILreward = {(X,y)

T

Minimize &, BCxGAIL loss = §,, BC loss — §,, GAIL reward

Figure 4.9: ENVI BCGAIL algorithm summary

4.5.4 Stage 4: Selecting the Best Environment Model

The IL algorithms return a set of trained environment models, and the best environment model that
mimics the actual environmental state transition well is selected in this stage. This is because many IL
algorithms, especially that based on GAIL, suffer from the convergence difficulty problem; the model’s
loss slowly converges or fails to converge [59]. Thus, we cannot guarantee the latest model to be the
best model, and a walidation process is required to select the best model from candidate models stored
during the training procedure. In original IL, human experts usually observe the simulation traces of
the trained model to evaluate whether the model behaves like themselves [60]. However, the physical
environment is the target of imitation of ENVI, so it is challenging to validate environment models
manually. To address this and automatically evaluate trained models, we suggest using three metrics:
(1) 1-tick loss, (2) Euclidean distance, and (3) Dynamic Time Warping (DTW). The idea behind the
metrics is to assess the similarity between the virtual and real environments using the validation part
(i.e., not used for training) of the seed logs. Using the metrics, the best model can be automatically
selected from the candidate models generated by the IL algorithm from the previous stage. The following

paragraphs detail the three metrics.

1-tick loss (exact matching of the 1-step execution) The first metric evaluates the 1-step exe-
cution of d,. This expects that if a single environmental state transition mimics the real environment
well, the simulation result, which is the sum of accumulated state transitions, will also be realistic [48].
This rationale is the same as that of the BC algorithm. Therefore, the same loss function is also used
here. Specifically, all possible model inputs collected from the validation FOT logs are given to d,, and
d,’s outputs are compared to the expected outputs collected from the validation dataset to calculate the

environment model’s validation loss.

Euclidean Distance (exact matching of the T-step executions) The second metric verifies that
the model’s T-step simulation results exactly match the FOT logs. It expects that given the same starting
point, FOT and simulation will proceed the same. Specifically, the model is simulated from the initial
states extracted from validation FOT logs, as described in the GAIL algorithm. The simulation logs are

compared to the validation FOT logs by the Euclidean distance. Euclidean distance compares ith point

47



of simulation log to the ith point of FOT log (so-called lock-step alignment) [61], so it captures whether

the §,’s simulations are precisely the same with FOTs well.

Dynamic Time Warping (pattern matching of the T-step executions) The third metric quan-
tifies the similarity of the patterns of T-step simulations and FOTs. This assumes that it is almost
impossible for the simulation to be exactly the same as the FOT in the multi-step simulation, so it at
least seeks to find an environmental model whose simulation pattern is similar to the FOT. Specifically,
it compares the simulation logs and FOT logs by Dynamic Time Warping (DTW). DTW is a time-series
distance metric that compares a point in a source series to many points in a target series (so-called
elastic alignment) and finally quantifies the similarity of the patterns of two time-series [61]. Therefore,

it measures how similar the behavior pattern of the virtual environment is to the real environment.

4.5.5 Stage 5: Verifying CPS Goals

The last stage of ENVI is to verify the CPS controller under analysis using the simulation with the
virtual environment model J, generated from the previous stages. This is decoupled from the previous
stages that leverage IL, so engineers can use any simulation-based methods with §, to get the CPS goal
verification result ¢(M,, ¢) for a given goal ¢. Specifically, an engineer can test the controller 7 based
on ¢, that provides realistic inputs (i.e., observable states) to m by simulating the virtual CPS-ENV

interaction model M, = (S, A, 7, d,,00) to collect many execution trajectories instead of FOTs.

Algorithm 3: ENVI CPS controller simulation
Input : ENV model (trained) d,,

CPS controller T,

Simulation duration T,

init model input history o

Output: Simulation trajectory 7

=

Sequence of state and action 7 < ()

N

History o « g

3 for T do

4 state s < d,(0)

5 action a < 7(s)

6 T < append(T, (s,a))
7 o + update(o, (s,a))
8 end

9 return 7

Specifically, CPS simulation using the generated environment model §, can be executed following
the Algorithm 3. To simulate M, the initialization data oy should be given. Since o is the partial
trajectory of M, over [ steps, the engineer should conduct partial FOTs over [ steps to get og. Notice
that acquiring o¢ is much cheaper than having full FOTs for FOT-based CPS goal verification since [ is
much shorter than T (i.e., the full FOT duration).

From the given initial input ¢, the CPS controller 7 and the environment model §, are sequentially
executed for simulation duration 7" steps. First, §, produces an environmental state. 7 observes the

environmental state and decides an action. The new state and action is recorded. Based on the new

48



state and action, the environment model input ¢ is updated by moving the history window one step
forward. After T-steps iteration, the collected simulation log 7 is returned.

This simulation can be repeated to accumulate as many assessments of ¢ as needed by statistical
verification methods such as statistical model checking (SMC) [62]. Indeed, an SMC algorithm (e.g.,
Sequential Probability Ratio Test [62]) may require thousands of trajectories to verify the CPS goal
depending on the given confidence interval. Therefore, the simulation using generated ¢, allows engineers
to perform the CPS goal verification with little cost in such cases. Although the initial input oy is
required for simulating M,,, having o¢ is much cheaper than having full FOT logs for FOT-based CPS
goal verification since ! (i.e., the length of og) is much shorter than T' (i.e., the entire FOT duration).
Furthermore, only one g would be enough for a nondeterministic §,, since it returns different simulation

results for the same oyg.

4.6 Summary

In this chapter, we introduced our novel data-driven environment model generation approach using
imitation learning, ENVironment Imitation (ENVI). Specifically, we introduced the process of ENVI and

user-configurable parameters (e.g., model structures, IL algorithms, and model selection criteria).

49



Chapter 5. Empirical Evaluation

5.1 Introduction

This chapter empirically evaluates our novel approach ENVI based on case studies of autonomous
driving systems and their goal verification. Specifically, it evaluates the accuracy and efficiency of ENVI-
based verification applied to the real CPS software controllers. We will call the simulation-based CPS
goal verification using ENVI-generated models FNVI-based verification in this chapter.

This chapter is organized as follows: Chapter 5.2 presents the research questions of the empirical
evaluation. Chapter 5.3 shows the CPS experimental environment and its implementation manuals.
Chapter 5.4 shows the experimental data collection process of this evaluation. Chapter 5.5 describes
detailed experimental setup for environment model generation. Chapter 5.6 provides the evaluation
results for each research question. Chapter 5.7 reveals the threats of the evaluation. Chapter 5.8

summarizes this chapter.

5.2 Research Questions

This section defines research questions of our empirical evaluation. We first investigate the impact
of using different ENVI parameters (i.e., model determinism, IL algorithms, and model selection criteria)
on CPS goal verification and obtain a guide for setting optimal ENVI. We then analyze how similar the
environment models generated by the optimized ENVI are to the real environment and how accurate
the goal verification results of the seen controllers (i.e., controllers used for seed log collection) are. We
then analyze ENVI’s environment model generation efficiency for efficient CPS goal verification in terms
of the cost of collecting FOT logs for the model generation. In addition, we analyze the goal verification
accuracy of the unseen controllers. We finally empirically search seed log collection strategies to make
ENVT effective for unseen controller variation verification. To summarize, we answer the following five

research questions:

RQ1: What is the impact of ENVI parameters on the simulation-based CPS goal verification accuracy?
RQ2: How accurate is the simulation-based goal verification of seen controller using ENVI?

RQ3: Can ENVI efficiently generate environment models with a small amount of FOTs?

RQ4: How accurate is the simulation-based goal verification of unseen controller using ENVI?

RQ5: What are the effective seed log collection strategies for accurate unseen controller verification
using ENVI?
5.3 Experiment Environment: Platooning LEGOs

In software engineering, it is challenging to validate an approach in the real CPS because development
of a CPS experimental environment requires huge cost. Therefore, to conduct our case study on the real

CPS and also to provide a public CPS experimental environment, we designed and developed an open

50



physical CPS experimental environment named Platooning LEGQOs. This experimental environment is
public experimental environment, so anyone can implement this cheaply and easily and utilize it for their

research. In this section, we first introduce our experimental environment in detail.

5.3.1 Introduction to Open CPS Experiment Environment

Cyber-physical systems (CPS), such as autonomous vehicles, play an increasingly important role
in modern society, attracting considerable interest in CPS engineering [63]. Because not only virtual
information but also physical conditions or people must be considered, it is difficult to fully anticipate
uncertainties in the environment of a CPS at the time of designing. Therefore, a CPS essentially requires
adaptation functionality that can consistently achieve system goals in uncertain environments.

Another characteristic of some modern systems is that they form systems-of-systems (SoS) in which
multiple independent systems cooperate to achieve higher-level goals that cannot be achieved by a single
system [16]. Examples of SoS are clusters of vehicles or drones, smart factories where many robotic
systems work together, and complex defense systems with multiple weapon systems. As the size and
influence of SoS increase, an important objective of SoS engineering is to ensure that SoS goals are
achieved stably regardless of uncertainty.

In this context, cyber-physical systems-of-systems (CPSoS) require engineering for collaborative
adaptations in the uncertain physical world [64]. To promote active research and share common adap-
tation problems, the Software Engineering for Adaptive and Self-Managing Systems (SEAMS) research
community has accumulated several exemplars® [65, 66, 67, 68, 69, 70, 71, 72, 73, 74]. However, there
are few exemplars for adaptation engineering of CPSoS. Moreover, while most exemplars have provided
simulators, studying CPS only in simulations without physical environments has limitations in reflecting
reality. Furthermore, building a physical experimental environment often requires specialized domain
knowledge and entails high costs.

To meet the need for a CPSoS exemplar to consider the physical environment realistically for adap-
tation engineering, we propose an open physical exemplar called Platooning LEGOs. As a representative
example of CPSoS, we selected a platooning technology for autonomous vehicles [75]. Platooning is an
industrial technology that is actively being developed by vehicle manufacturers. Vehicles with the same
destination form a platoon through communication, drive in a line to reduce air resistance, thus reduc-
ing fuel consumption, and adjust the distances between them to reduce road occupancy. Platooning
is self-adaptive to uncertain situations in a driving environment. Our exemplar implements platooning
using programmable LEGO robots. Unlike the cases where platooning robots have been implemented
and used in experiments privately [76, 77, 78], we propose Platooning LEGOs as a reproducible and ex-
pandable exemplar that allows anyone to build the same physical experimental environment for CPSoS

engineering. In summary, our Platooning LEGOs exemplar contributes to the field as:

e a CPSoS exemplar: an industrial adaptation model problem (platooning) representing both CPS
and SoS,

e a physical exemplar: a physical experimental environment producing real data from physical sensors

and actuators,

e an open exemplar: an exemplar that allows anyone to build the same physical experimental envi-

ronment with a limited budget using LEGOs and expand its physical and software elements.

1SEAMS exemplar repository:
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

51



5.3.2 Platooning LEGOs Overview

SoS-level overview

i i platooning vehicle
@ non-platooning vehicle
accident

. * unknown object/situation

Vehicle 1
Leader

(Sllll)

communication range
sight range
d forward distance

Vehicle 2 S driving speed

Follower
(s2,13)

I
1
I
I
I
I
1
I
I
1’
I.
I
I
I
: l driving lane
I

I

1

I

I

-+ ———road occupancy

1
Vehicle 3 |
Follower :
(s3,13) H
>

Figure 5.1: Overview of Platooning LEGOs

Platooning is a technology currently being developed by real industries; therefore, levels and func-
tions vary according to the manufacturer. We refered to demonstrations of various platooning techniques
and simplified core features that can be implemented using LEGOs. Figure 5.1 shows an overview of our
Platooning LEGOs. Each platooning vehicle is a programmable LEGO robot. A vehicle can indepen-
dently drive in a lane, control its driving speed, change lanes, and detect obstacles ahead. Each vehicle
transmits a set of raw data that include its current driving speed, lane, and forward distance. The
platoon comprises three vehicles. The first vehicle is the leader, which knows the conditions ahead. The
second vehicle is a follower driving along the path of the leader and relaying the leader’s state to a third
vehicle, another follower, which follows the second vehicle and is outside the leader’s communication
range. As unknown objects or situations exist in a road environment, each autonomous vehicle makes
decisions on its speed and lane so that the platoon adaptively achieves its SoS-level goals in an uncertain
environment.

The SoS-level adaptation goals of the platoon are summarized in Table 5.1. There are two “hard”
goals (with clear satisfaction criteria) and two “soft” goals (without clear-cut criteria). If the two hard
goals are achieved, the platoon tries to achieve the soft goals. The first hard goal is to prevent a collision
with another vehicle or other object. The second hard goal is to drive in a row in the same lane to

minimize air resistance and thus fuel consumption. The first soft goal is to minimize road occupancy

52



Table 5.1: Robot vehicle goals of the Platooning LEGOs

Evaluation met-

Goal Description .

ric
(Hard)  Collision | All vehicles of the platoon shall not collide with any (dy > 0) A (do > 0)
prevention vehicle or object. A (ds > 0)

3

(Hard) Driving in a | Except when changing lanes, all vehicles of the pla- Iy = 1) A (I = 13)
row toon must drive in a row on the same lane.

A(ls=1)

In order to reduce road occupancy, the distance be-

(Soft) Road occu- dy + ds+

. tween vehicles in the platoon should be minimized as
pancy minimization

much as possible. (3 x vehicleLength)

In order to shorten the travel time, the average driv-

Soft) Travel speed

( ) o P ing speed of the platooning vehicles should be max- s1ts2+ 53
maximization L L o 3
imized within road limits.

for smooth traffic flow. This is achieved by minimizing the distances between the platooning vehicles by
speed adjustments. The second soft goal is to maximize the platoon’s driving speed to minimize travel
time. The data-based logical or numeric evaluation metrics of the goals are displayed in Table 5.1. In
cases in which the experimental data cannot accurately show whether the goals are achieved in a physical
environment (e.g., a side collision of a vehicle), users can observe the experiment itself in addition to the

data to determine whether the goals are achieved.

Self-adaptive constituent vehicles

In this section, we describe the behavior of each constituent vehicle. Each vehicle is autonomous
and stand-alone. The vehicles’ activities are summarized in Table 5.2. The activities are organized as a
MAPE (Monitor, Analyze, Plan, and Execute) loop of SAS [79]. Although in this work we implemented
an independent MAPE loop in each vehicle without a coordinator, different types of MAPE patterns for
SoS can be used in our exemplar [80]. Our LEGO vehicles are equipped with three kinds of sensors: a
color sensor for line following, an ultrasonic sensor for obstacle detection, and a maximum of two buttons
for reception of the driver’s manual commands. We assume the color sensor for line following to be a
basic function for autonomous driving, and it is thus not described in Table 5.2. Only driving lane and
speed adaptations are described.

The first vehicle (leader) senses forward distances to detect accidents or other obstacles. It can also
sense the driver’s commands, such as manual control of speed or lane, through buttons. In some real
examples of platooning, a leader vehicle allows manual driving. However, even if there is no manual
command, it can automatically adapt the driving speed and lane. Moreover, it sends its current driving
speed, lane, and forward distance to a follower vehicle.

The second vehicle (follower) senses forward distances and receives the leader’s current state. How-
ever, unlike the leader, when it is part of a platoon, its steering wheel and accelerator cannot be used,
and only adaptive cruise control is allowed. In real cases, a follower can leave or join the platoon at
the driver’s command, but the exemplar described herein only covers the joined state of the platooning
protocol. If a user wishes to allow manual command of a follower vehicle, it can be expanded using

buttons. Based on the monitored and received situation of the platoon, the second vehicle follows the

53



Table 5.2: Activities of vehicles in Platooning LEGOs

Vehicle Activity

Monitor & Receive:
e Forward distance (Ultrasonic sensor)

Vehicle 1: e Driver’s manual command (Button)

Leader Analyze & Plan:
e Driving speed decision

e Driving lane decision

Execute:
e Setting the driving speed
e Changing/keeping the driving lane

Send:

e msgl (to vehicle 2)

— Current driving speed
— Current driving lane

— Current forward distance

Monitor & Receive:
e Forward distance (Ultrasonic sensor)
Vehicle 2: o Peers’ situation (msg!) (Bluetooth)

Follower Analyze & Plan:

e Driving speed decision

Execute:
e Setting the driving speed
e Changing/keeping the driving lane

Send:

e msg2 (to vehicle 3)

— Current driving speed
— Current driving lane

— Current forward distance

Monitor & Receive:
e Forward distance (Ultrasonic sensor)
Vehicle 3: e Peers’ situation (msg2) (Bluetooth)

Follower Analyze & Plan:

e Driving speed decision

Execute:
e Setting the driving speed
e Changing/keeping the driving lane

Send:

e None

54



leader’s lane and decides the speed.

The third vehicle (follower) follows the first and second vehicles. Because the leader’s communi-
cation range may be limited, the third vehicle only receives messages from the second vehicle. This
communication topology is called “predecessor following” [81]. Although all activities of the third vehi-
cle are subsumed by the second one, it is still an independent constituent system, and it adapts its speed

to contribute to the platoon’s goals.

Environmental uncertainties of the platoon

The environmental uncertainties that can be addressed by Platooning LEGOs are summarized in
Table 5.3. The platoon has limited knowledge of the peers’ situation, the physical road environment,
such as other vehicles or accidents, and human drivers’ behavior. It is almost impossible to enumerate
all possible situations of the platoon at the time of designing. Therefore, the platoon should be adaptive
to the uncertainty of the environment. Because Platooning LEGQOs provide a physical experimental
environment, realistic physical events can be simulated in experiments. Moreover, the platoon interacts
with the environment through sensors and actuators. Actual interactions may differ from the expected
interactions due to sensing/actuating noise or failure. Such incomplete interactions can also produce
uncertain platoon operation results. To simulate diverse settings and address various uncertainties,

sensor/actuator noise or failure rates can be introduced to experiments.

5.3.3 Implementation Manuals

Physical implementation

Button (Manual command)

EV3 brick (Computation)
Wheel (Driving)

Ultrasonic sensor (Obstacle detection)

Color sensor (Line following)

Figure 5.2: A LEGO Mindstorms EV3 vehicle

Vehicle implementation: FEach vehicle is an independent LEGO MINDSTORMS EV3 robot (The
LEGO Group, Denmark), as shown in Figure 5.2. Each robot is equipped with two main wheels connected
to motors and one auxiliary wheel. It is also equipped with a color sensor and an ultrasonic sensor to
sense the road and the situation in front of it. Messages from other vehicles are received via Bluetooth,
which is embedded in the EV3. A button can also be attached for commands from a human driver,
such as manual lane change or acceleration. All physical implementations are very simple and follow

the building instructions provided by the manufacturer. The instructions and manuals of the Platooning

55



‘Sosned UQQOQQKGQS J97J0 JO JI0j0W 9} HM JOLID UOT}I9UUOD

® 0} dNP PoINeXe 9q j0u Aewr uorjoe pouue[d o) ‘Aiqeqord Moy AIoA @ TIAN

aan[re] SuIoyHg

‘PROI 97} JO 9210J U0}
Se ONSs SHUreI)suod [edrsAyd 1o uorsiard pajrwI] S,10J0UW 9} JO 9SNeIdq PlIom

reotsAyd o) o3 pordde A[eept oq j0u Aewr Iotavyaq uorjejdepe pouur(d oy T,

Suryoepe agyemoseuy

"SSO[ a8essow 10 SI0sues [RISAYd ueyoIq

9T[} JO 9N JUSTUOIIAUS ST} UO UOTJRUWLIOJUI UTR}QO 0O} [Ie] AT SS[OIYdA ST,

aIn[rey SuIsSug

‘sAe[op
1019d000.1/UOTSSTUISTRI) 9FRSSOUL 10 OSIOU JOSUOS JO 9SNLID(C UOTPRTIS [RIUOUIUOL

-IAUD [BN)OR 9] 1000l A[9)RINodR j0U ARUI UOIJRULIOJUI POAIIAI I0 PISULS oY ],

Sursues 9jeINOYRU]

JUOUIUOIIATIO O} [IIM
uoroeIUI 939[dWooUT

9T} 0} anp AJUIe)IDU()

‘sreo3 s, uooge[d 9} JO JUSUISARIIR
o} )M oIojIojul Aemr pue o[qe)orpaid A[ojeindoe aq jou Aeul IOIARYD( o1}

pue ‘suoling YSNOIY} [OIYA © 0) PURTITIOD JIIIIP € dAIS WeD IDALIP UewWny Y

IOIART[R(
uewt

-y o[qejorpaxdupn

56

JUOUIUOIIATIO

‘pojarpald o joutred YOIYM ‘INdO0 AR ‘PROI 1) UO JUIPIIOE Ue cud

OIS
IO JIYLA Ioyjoue A UondNImIuI Ue se Yons ‘suonipuod [estsdyd pejoodxoup TS

o[qejorpaxdun TUOUWUOIIATS 9}
‘o0urApR Ul pajedionjue AnJ SUOI}RNYIS JO 98po[mouy pojrul]
aq jouued suorjenyis sivad oqrssod oY)} N ‘UOIOIUUOD JIOMIDU B YSNOIY) s190d 9y} 03 anp AuUre)Iddu)

POATOODI UOIYRN)S S109d O} UO POseq IOIARYOQ S SOUIULIOIOP OOIYSA [ORG] a[qejorpaxdun
Ayurey

uo1ydraosa( K10393e0Qqng

=I90Um [ejusdtuoIIAuUY

SOHHT buruooin)J o) Aq posSoIppPe SOTUTELISOUN [RJUSTUOIAUG (€'G d[qR],



20
OQuter lane a
|

20cm

[«—— Inner lane

Figure 5.3: Road environment
LEGOs have been uploaded to our GitHub repository?.

Road implementation: To simulate platooning on an endless highway, engineers print circular roads,
as shown in Figure 5.3, and attach them to a floor. There are an outer and an inner lane. Vehicles drive
clockwise following the boundaries of the black line. When a vehicle decides to change lanes, it turns in
the direction of the new lane and drives until it finds a white area. The road implementation material
has also been uploaded to our repository?. The simulated road environment can be easily replicated
using sheets of paper and a space of only about 2mx2m. Figure 5.4 shows the vehicles and simulated
road environment. The three vehicles are in the outer lane.

As Platooning LEGOs provides a physical experimental environment with very simple physical
implementations, they allow software engineers to focus on the vehicles’ software. The software imple-

mentation guide is provided in the next subsection.on.

Software implementation

The vehicles’ software is implemented using a Python API3. Each vehicle iteratively performs mon-
itoring, analysis, planning, and execution. A detailed description of each step is presented in the code

skeleton shown in Algorithm 4.

Monitor € Receive: The lane and speed adaptations are based on recognition of the road envi-

ronment and the peer vehicles’ state. The road environment is monitored by sensors. A color sensor

2 Platooning LEGOs repository: https://doi.org/10.5281/zenodo.4604167
(https://github.com/yongjunshin/Platooning-LEGOs)
3Mindstorms EV3 APT: https://pybricks.github.io/ev3-micropython

57



Figure 5.4: A physical implementation of Platooning LEGOs

Algorithm 4: A vehicle code skeleton
1: Configuration of sensors, motors, and vehicle

data = DataLog(‘time’,‘lane’, speed’)
watch = StopW atch()
while T'rue do
time = watch.time()
color = colorSensor.re flection()
dist = ultrasonicSensor.distance()

peerLane = laneM ail Box FrontVehicle.read()

© ® I 2 o Bk w N

Adaptation of lane and speed

H
<

vehicle.drive(speed, turnRate For(lane))
lane M ail Box: BackV ehicle.send(lane)

12:  data.log(time, color, dist, peer Lane, lane, speed)

—_
—_

13: end while

monitors the floor and returns a color value of the road (Algorithm 4, line 6). An ultrasonic sensor
measures the distance to objects in front of the vehicle in millimeters (Algorithm 4, line 7). The peer
vehicles’ state is received via Bluetooth. A vehicle shares a mailbox with another vehicle and can receive
data using the read() function (Algorithm 4, line 8). For more complex scenarios, additional sensors,
such as touch, gyroscope, and infrared sensors, and mailboxes for information reception from more peers

can be used following the API® and our manual and sample codes?.

Analyze € Plan: Each vehicle adapts its driving lane and speed by analyzing the monitored environ-
ment, the peers’ state, and its own state (Algorithm 4, line 9). Engineers can use their own adaptation
approaches and analyze their effectiveness. To guide their implementation, we provide a code skeleton

and the sample code used in our experiment through our repository?.

Ezxecute: A vehicle is an instance of a DriveBase object in the API, and the adaptation decision on
speed and lane is executed by the drive() function of the instance (Algorithm 4, line 10). The function

receives the speed (mm/s) and rotation angle (deg/s) as inputs. The driving lane is a specific concept in

58



our exemplar, so a lane change decision must be converted to a rotation angle. Changing the lane can
be realized by turning clockwise or counterclockwise. A reusable code for following and changing lanes

can be found in our repository?.

Send: To achieve SoS goals, the state and adaptation decisions of a vehicle should be known to a
follower. The vehicle uses the send() function of a mailbox shared with the follower so that the follower

can read the data. This communication allows the vehicles to be integrated into an SoS.

Data logging: Logging data is an important feature of an experimental environment. The LEGO
APT? provides a simple logging function implemented in two lines of code (Algorithm 4, lines 2 and 12).
The data are saved as a CSV file. A timestamp for each iteration of the adaptation loop can also be
extracted (Algorithm 4, lines 3 and 5).

5.3.4 Sample Experiment of Platooning LEGOs
Sample scenario

To demonstrate the feasibility of the Platooning LEGOs as a physical experimental environment
for CPSoS engineering, we conducted a sample experiment. The platooning vehicles were programmed
to achieve the adaptation goals described in Table 5.1. The implementation code can be found in our
repository?. To check whether our platoon implementation is sufficiently adaptive to environmental
uncertainties, we introduced two events that could interfere with the goal achievement while the platoon
is driving. The first event was an interruption by a mowving obstacle, such as a non-platooning vehicle on

a highway. The second event was a blockage of a lane due to a fized obstacle, such as a traffic accident.

Sample experiment result

The experimental code and result data have been uploaded to our repository?. The experimental
results are visualized in Figure 5.5. A video of the experiment has also been released*. Figure 5.5 (a—d)
shows the achievement of the platoon’s adaptation goals. Figure 5.5 (e-f) shows the adaptations of each
vehicle. The unexpected events (obstacles) are also shown. The two hard goals (collision prevention and
driving in a row) were achieved in all scenarios. On the other hand, the achievement of the two soft
goals varied depending on the situation.

When moving obstacles interfered with the platoon’s driving (moving obstacles 1 and 2 in Figure 5.5),
road occupancy increased and travel speed decreased. However, after the moving obstacles disappeared,
the vehicles adapted their driving speeds to reduce road occupancy and increase the platoon’s travel
speed. When stationary obstacles blocked a lane (fixed obstacles 1 and 2 in Figure 5.5), the travel
speed decreased. The leader decided to change lanes, and the followers also changed lanes to bypass the
obstacles. The vehicles then adapted their speed to maximize the platoon’s travel speed. The experiment
confirmed that the Platooning LEGOs can be used as a case of industrial self-adaptive CPSoS and a

physical experimental environment for CPSoS engineering.

4Experiment demonstration video - https://youtu.be/tRSoTPq5EET

59



[ IR RN BRI . | Vehicle 2

g g
20‘\0‘\ Bo‘\a‘\
a) Collision prevention v 2
T S PSR e :
' o True H
PN i
S i
1o~ ;
1 Z° False i
[ S B OSNNEN H
b) Driving in a row Legend
e e, oA
! % True : ! :
: gag ; : Platoon (SoS) i
e 1 |
! = False ! !
| ° [T i
RN SV URURTNURURURVIIRRn SR N URURRURUNN B S L Moving
1 1
c) Road occupancy minimization ; a}'f(;as%e i
P i et R ——— ——————— . :
) H .
P s= T i
S E 'i  Vehicle1 i
-3 i i
L8 i ;
'O H !
; 550 b i
i
i
i
i
i
i
i

Vehicle 3

Average
driving speed
(mm/s)

In>0ut
In

Out>In

Driving
speed
(mm/s)

Figure 5.5: Sample experiment results

5.4 Experimental Data Collection

We collected experiment data for this case study using the Platooning LEGOs. We collected the
data not for only our case study also for other related research. Therefore, we systematically collect the
FOT log data and open the dataset as a research data benchmark. This section describes both how the

experiment dataset is collected and how to use the dataset.

5.4.1 Introduction to Open CPS FOT Dataset

Cyber-physical systems (CPSs) continuously adapt their actions to satisfy goals in physical environ-
ments [4]. A CPS has a feedback loop consisting of a controller that checks the goal achievement and
manipulates physical components based on its decision-making strategy [3].

Developing a decision-making strategy is one of the primary purposes of CPS development. When

60



there are many goals that a CPS is required to achieve simultaneously, it becomes more challenging to
develop an effective strategy. One popular approach is to create dedicated controllers for each goal to
divide the concern [82, 83, 84]. It views complex CPSs through the lens of system-of-systems (SoS) [21,
20, 85]. For example, both a lane-keeping system and an adaptive cruise control system operate together
within an autonomous vehicle.

Engineers can conduct field operational tests (FOTs) [86] of a CPS under development to evaluate
to what extent the CPS can achieve the given goals in the actual operational environment and optimize
the configurations of the CPS controllers. However, conducting the CPS FOT has several engineering
challenges. FOT results are stochastic because of uncertainty in the physical environment (e.g., sensor
noise). It requires engineers to repeat many FOT's to obtain statistically significant results. In a multi-
controller CPS, one controller may affect the performance of another controller during an FOT. A
specific combination of controllers may trigger an emergent behavior that developers may not expect.
Additionally, in many cases, the configuration space of the controllers under analysis is extensive and
continuous, making the optimization of the controllers more exhaustive.

To realize these challenges, we have hands-on experience in developing a multi-controller CPS and
conducting FOTs. We designed and modeled an autonomous robot vehicle consisting of a lane-keeping
system and adaptive cruise control system. We then performed FOTs of 125 possible controller configu-
rations each 50 times, and analyzed the results. This paper provides all materials and datasets related
to this case study for future research and shares the lessons learned from our hands-on experience.

In summary, this paper contributes to the research on multi-controller CPS development by providing

the following:

e A re-implementable case study of a multi-controller CPS, including its model, software, and hard-

ware implementation manuals,

e An autonomous driving FOT log dataset of 125 controller configurations, each with 50 test results,

obtained from about 100 hours of driving,

e Lessons learned from hands-on experience exposing research challenges emerging in the multi-
controller CPS FOT,

e Possible applications of the FOT log dataset for future research.

5.4.2 Background of CPS Controller Feedback Loop Design

Disturbances

2

Plant > Output

+ Error Control values
Goal Controller >

A

Figure 5.6: A feedback loop from the control perspective [3]

Many CPSs have feedback loops that observe the uncertain and changing environments and make
adaptive actions [87]. A popular approach to modeling the feedback loop is based on control theory [88,
83, 89].  Figure 5.6 shows the feedback loop from a control perspective [15, 3]. The feedback loop

consists of a controller and a plant. Control values generated by the controller manipulate the plant,

61



and the plant’s behavior depends on the control values. The behavior of the plant is measurable for the
system goals. Using the measured behavior of the plant, the controller calculates the error associated
with each goal and determines the control values of the plant to minimize the error. In addition to the
control values, factors that affect the plant’s behavior but are not under the direct control of the system
are called disturbances or, sometimes, uncertainties in software engineering. The disturbances can make
the behavior of the plant different from what the controller intended, so the controller should mitigate
the effect of the disturbances. Many studies expect that the deep foundation of control theory will boost
feedback loop design [90, 91, 92, 93]. Therefore, this study also models and develops a multi-controller
CPS using feedback loops based on this control perspective.

5.4.3 CPS FOT Data Collection Scenario

Autonomous vehicle
(Lane-keeping system,
Adaptive cruise control system) External vehicle
[

(assumption:

g driving ata
#® constant speed)
—_—

I Color (ambient light intensity (%))

Y — -
V4 Ve
( 10% | 50% | 90%
\ ' \ ol

Figure 5.7: An autonomous robot vehicle case study design

This section introduces the design of our case study to develop and analyze a multi-controller CPS.
We developed an autonomous vehicle to provide a representative example of a multi-controller CPS. We
utilized an open physical experiment environment Platooning LEGOs [23] that provides a programmable
LEGO robot vehicle and an experimental track design®. Leveraging the physical experiment environment,
we implemented our case study in Figure 5.7. We developed an autonomous vehicle equipped with a lane-
keeping system and an adaptive cruise control system. The vehicle observes its operational environment
using a color sensor facing down (i.e., lane) and a distance sensor facing the front. The color sensor gives
the light intensity value of the lane under the sensor. The value provides information about the vehicle’s
relative position from the lane center (i.e., the border between the white and black areas). In addition,
there is an external vehicle in front of the autonomous vehicle, so the distance sensor gives the distance
between the two vehicles. We assume that the external vehicle drives at a constant speed in this case
study.

The autonomous vehicle has two explicit control systems and goals, as shown in Figure 5.8. The

control systems are modeled as decoupled feedback loops from the control perspective, and they operate

5Hardware implementation manuals of the robot vehicle and the FOT environment: https://github.com/KAIST-SE-
Lab/Platooning-LEGOs

62



Lane-Keeping System

’ \
I + Error . Steeri
1 Color goal —).—) Steering controller eering :>
e Ao ] T,
Adaptive Cruise Control System Vehicle

pmmmm e e e e e e L e e e e -
[ + Error Speed
1 Distance goal — Speed controller D : >
L s N — J

) Drive

Color Distance
Environment Perception [«

Figure 5.8: Autonomous vehicle controllers

together to achieve the two goals simultaneously. The first goal is to drive as smooth as possible following
the center of the lane. The value of the lane center recognized by the color sensor accurately specifies
this goal. The lane-keeping system observes the lane color of the current position. It calculates the error
between the observed color value and the goal, and a steering controller decides the steering angle to
keep the vehicle at the lane center. The second goal is to maintain the distance between the autonomous
and the external vehicles to a set distance configured by the user. The adaptive cruise control system
observes the distance and calculates the error from the goal. The speed controller sets the speed to
minimize the error. Therefore, the steering angle and speed pair specify the vehicle’s instant driving
state.

We implemented the controllers as PID controllers [94]. A PID controller gets an observation value
o(t) (e.g., color or distance) from a sensor and calculates the error e(t) for a goal. It returns a control value
y(t) (e.g., steering angle or speed) from the error e(t) as follows: y(t) = Kpe(t) + K; fot e(r)dr + K4 dfi(tt).
In discrete system whose t = 0,1,2,..., y(t) = Kpe(t) + Ki Y b_,e(r) + KqAe(t), where Ae(t) =
e(t) — e(t —1). The three non-negative coefficients K,, K;, and Kg, each determines the degree of

activation of different control mechanisms [94], configure a PID controller. We implemented the discrete
PID controllers of the lane-keeping system and the adaptive cruise control system in Python embedded
in the robot vehicle. The software iteratively calculates the steering angle and speed every 50 ms. It
records o(t), e(t), Zi:o e(7), Ae(t), and y(t) of both the steering and speed controllers. We released the

controller software used in this case study.®

5.4.4 Data Collection Strategy

To analyze autonomous driving, we conducted FOTs of the vehicle with numerous possible steering
and speed controller configurations. We ran the vehicle FOT with varying independent variables that
affect autonomous driving performance, as shown in Figure 5.9. The configuration of the coefficients
of the steering and speed PID controllers primarily affects driving performance. However, to limit the
orthogonal configuration axes, we fix the K; and K, but only vary K, of the controllers (x- and y-
axes). In addition to the controller configurations, the environment is another factor that affects CPS
goal achievement but is not under the direct control of the CPS. An external vehicle is a dynamic

environment of an autonomous vehicle. Therefore, we also varied the constant speed of the external

6Controller software and FOT log data collected from this case study: https://github.com/est-cho/AV-FOT

63



FOT configuration axes

I
1
1 . N
| i’ 1. Steering PID controller config.
l
1
|

.

YKy = x,K; = 0.1,K; = 0.5)

!
A |
18 z ; 2.Speed PID controller config. !
! 220! (Ky=y,K;=0,K;=03) !
154 /) | 3. External vehicle speed config. :
L2 Il % 200 v (zmm/s) J
) _: \ o 180
0.9/ Frod .
/ ;0\ 160 An FOT configuration
et > 140 (x = 0.6,y = 0.9,z = 180)
X | | Vi

0.4 0.5 0.6 0.7 038

Figure 5.9: Autonomous vehicle FOT configuration space

vehicle (z-axis) during FOTs. Based on a pre-experiment, we set our case study’s configuration range
and fixed coefficients, as shown in Figure 5.9. Note that the configuration axes are continuous, so it is
impossible to experiment with all possible configurations. We discretize the configuration range to five

for each axis, so there are 125 (= 5 x 5 x 5) possible configurations of the autonomous vehicle FOT.

T

Figure 5.10: Implemented robot vehicles and the FOT environment

Figure 5.10 shows the implemented robot vehicles and the FOT environment. The color goal was
33%, which is the value obtained when sensing the center of the lane in our experimental setting, and
the safe distance goal between the two vehicles was 200 mm, which is longer than the length of a robot
vehicle. The length of the lane is 3 m, and the distance between the tails of the two vehicles at the start
of driving is 1 m. The two vehicles start driving simultaneously, and the experiment ends when the front
vehicle arrives at the end of the lane. We keep the rest of the elements as consistent as possible, except

for the independent variables under analysis (i.e., FOT configurations). However, since uncertainties may

64



exist in the physical environment (e.g., sensor noise or non-uniform friction of the lane), we repeated the
FOTs of all possible configurations in Figure 5.9 50 times to obtain statistically significant results. The

FOT dataset is available in our repository.®

5.4.5 FOT Data Analysis

We conducted 50 FOTs for each configuration, taking about 100 hours, and collected 6,250 (=
125 x 50) FOT logs. The volume of the dataset was about 80 MB. The raw data were released on our
repository®. By analyzing the FOT logs collected by varying independent variables (i.e., configurations),
engineers can understand the controllers of the CPS. This section describes the collected FOT logs by

analyzing them from three viewpoints.

100 100
S~ ., 5 75 )
c =\= 50 : N e L 3 ™, o, ~ ] =\€ 50 ~—a L N A 2
ST 25 ST e S M W e N S 5 WL e e,
0 0 -
@ 1000 o 1000
=g 70 Eg 0
gz sw E g 5w
= 5B 250 2 E 250
e 0 =2 0
;o En 0 . m._‘ﬂ-v ',‘“"'.-'-"""\"‘""' i PR PNy o R N Eﬁ E‘c i A : 5
<5 -0 <5 -10
~ 20 =~ -0
. 800 _. 800
2E 60 2=
a E 400 2 E 400
@ E 200 @' E 200
0 0
0 50 100 150 200 0 50 100 150 200
Time (x50ms) Time (x50ms)
(a) Config. (x=0.4, y=0.6, z=140) (b) Config. (x=0.8, y=1.2, z=220)

Figure 5.11: Autonomous vehicle driving trace visualization

Viewpoint 1: Analyzing a single FOT result The driving trace of an FOT is the time-series data
of the variables described in Section 5.4.3. Engineers may evaluate a vehicle’s driving performance with a
specific configuration by analyzing the time-series data. Figure 5.11 visualizes two arbitrary FOT logs.
It only visualizes the color and distance observation values, steering angle, and speed control values.
Since the FOT ended when the front vehicle arrived at the end of the lane, the lengths of the FOTs
in Figure 5.11 (a) and (b) differ depending on the external vehicle speed z. We also observed that the
vehicle controllers continuously adapt the steering angle and speed during driving. Consequently, the
observed values of lane color and front distance changed. In the log, we observed that the vehicle moves
left and right to keep itself on the lane center as much as possible. In addition, after the autonomous
vehicle caught up with the external vehicle, it drove while maintaining a safe distance from the external
vehicle. We can observe that the change in configuration results in different shapes of time-series data.
In addition, engineers can quantify the driving characteristics of a specific configuration, such as the time

to catch up with the front vehicle and the amplitude of the fluctuation of the lane color [95].

Viewpoint 2: Analyzing the FOT results of a configuration There are many FOT logs of the
same configuration, so engineers can statistically evaluate the goal achievement of the configuration.
Figure 5.12 shows the distribution of the two autonomous driving goal achievements (i.e., lane-keeping
and adaptive cruise control) of three arbitrary configurations in terms of the mean squared error (MSE)

of lane color and distance time-series data from the goals. A small lane-keeping MSE means driving close

65



O

Un

O
O
2e-+05 w E [] Config.(x,y,z)

] (0.4,0.6.220)
A O (0.8,1.8.140)
M&%%cﬁéAMA /\ (0.8,1.8220)
1e+05 M w
QPP o

0 100 200 300
Lane Keeping MSE

Adaptive Cruise Control MSE

Figure 5.12: Distribution of achievement of two autonomous driving goals obtained through repetitive
FOTs

to the center of the lane, and a small adaptive cruise control MSE means catching up with the external
vehicle quickly.

In Figure 5.12; we can see that the FOT results were not always the same, even though engineers
tested the same configuration. We tried to control other variables as much as possible, except configura-
tion. However, uncertainties (e.g., sensor noise, the direction in which the vehicle was placed manually,
or the remaining battery) still affected goal achievement. By analyzing this distribution, engineers could
evaluate the consistency of many FOTs of the same configuration, thereby quantifying the degree of the
uncertainties that affect the controllers. For example, configuration (0.8, 1.8, 140) appears to be less
affected by such uncertainties than the other configurations shown in Figure 5.12. In particular, we
can see that the goal achievements are further dispersed by simply increasing the external vehicle speed
while remaining in the other configurations. It shows that the degree of uncertainty of the FOT varies

depending on not only the CPS’s internal configurations but also the environmental configurations.

Viewpoint 3: Analyzing the FOT results of many configurations Engineers can also explore
changes in goal achievement by varying configurations to optimize the controllers of the autonomous
vehicle. This allows engineers to understand how each configuration axis affects CPS’s goal achievement.
Figure 5.13 shows how the goal achievements of the lane-keeping system and the adaptive cruise control
system change with steering and speed controller configurations, respectively. Configuration axes that
were not analyzed were arbitrarily fixed for visualization. Although many FOTs were not deterministic,
we could statistically compare different configurations. In Figure 5.13 (a), the steering controller whose
K, (z) was 0.6 performed the best on average when y was 1.5 and z was 200. In Figure 5.13 (b), the
adaptive cruise control system achieved its goal better as it increased the K, of the speed controller (y)
when x was 0.6 and z was 180.

Figure 5.14 analyzes the errors of the two autonomous driving goals by simultaneously changing

the two configuration axes. Subgraphs (a) and (b) show the MSEs for lane-keeping and adaptive cruise

66



300

150000 *

120000

mmal T

Y

200

SRR <
ELEER

TEREe -
ZLERE

Lane-Keeping MSE
Adaptive Cruise Control MSE

0.6 0.7 0.8

* (b) Adaptive cruise control goal achievement (x=0.6,

(a) Lane-keeping goal achievement (y=1.5, z=200) z=180)

Figure 5.13: Changes in the achievement of autonomous driving goals affected by configurations (one

independent variable)

control, respectively. Additionally, the subgraphs also show when the speed of the external vehicle, which
is an environmental factor, is 140, 180, and 220. A point in a 3D graph is the MSE average of 50 FOTs.

In Figure 5.14 (a), as both x and y increase, the lane-keeping MSE generally increases. This means
that the larger the K,s of the steering and speed controllers are, the more the vehicle shakes left and
right on the lane. Although y was a configuration variable of the adaptive cruise control system, it also
affected the performance of the lane-keeping system. In addition, shaking increased as the speed of the
external vehicle increased. As shown in Figure 5.14 (b), the adaptive cruise control MSE was primarily
affected by the y configuration axis. The larger the y, the smaller the MSE. This finding shows that the
autonomous vehicle could catch up to the external vehicle quickly and maintain the distance because
the K, of the speed controller was large. In addition, the faster the external vehicle, the harder it is to
maintain the safe distance.

Based on this viewpoint, engineers can understand the trade-off between the goals of the autonomous
vehicle and the goal achievements of each configuration. Finally, the controllers can be optimized based

on this analysis and knowledge.

Engineers can analyze CPS’s behavior and the controller configurations’ impact on CPS goals with
these various viewpoints. Through the analysis, the engineers obtain knowledge to understand CPS con-
trollers. In addition, based on statistical analysis, many FOT results can provide statistically significant

information to engineers.

5.4.6 Possible Applications of the Open FOT Dataset

We released the FOT logs collected from our case study® for future research on engineering for multi-
controller CPS development and FOT engineering. This section introduces some possible applications
of the FOT dataset.

Data-driven modeling of the CPS-environment interaction Due to the interaction of the CPS

and the environment, both CPS states and environmental states change over time. Accurate modeling

67



150

100

Lane-Keeping MSE

50

92 15
0.6 12
i - 0.5 09 - &
04 06 y 04 06 Y 04 06 Y
(a-1) z = 140 (a-2)z = 180 (a-3)z = 220

(a) Lane-keeping goal achievement

T T~ S

200000

| : -
2000000 _—

\‘ N~
150000
‘

| . "

150000/

‘

|

‘

\ 100000!

; 08 \ >
~ 18 -
0.7 \ s 0.7 15
0.6 \ 12 0.6 12
Pt Pt
. 05 09 0.5 09

04 06 y x 04 06 Y

|
150000
|

|
150000

\
\/
—
o
=3
=3
=3
=3
AE/
73
\
\
\
/
—
53
=3
=3
=3
=3
°/
/
GEENENNRY.

‘
100000 |
|

0.8 100000

Adaptive Cruise Control MSE

04 06

(b-1) z = 140 (b-2) z = 180 (b-3) z = 220

(b) Adaptive cruise control goal achievement

Figure 5.14: Changes in the achievement of autonomous driving goals affected by configurations (three

independent variables)

of the interaction and its effect is the first step for an accurate CPS simulation to reduce the FOT
cost [27, 39]. We can automatically extract valuable interaction models from our FOT log dataset [28, 24].
The FOT log shows sequential transitions of the CPS’s internal data used for decision-making (e.g., speed
and angle control values) and the environmental data observed by sensors (e.g., distance and color sensor
values) every 50 ms. In addition, our dataset contains many FOT results of different CPS configurations,

so it could also reveal the effect of the configurations on the interaction.

Quantifying uncertainties of multi-controller CPS The uncertainties mentioned earlier stem-
ming from CPS operation in a physical environment and multiple controllers’ interdependence (emergent
behavior) may cause the CPS to behave contrary to the engineers’ expectations. To mitigate the uncer-
tainties, the execution data of CPS may be analyzed further by quantifying uncertainties or extracting
causes of variations in goal achievement within a configuration [96, 97]. To quantify uncertainty, enough
sample data are needed to obtain statistically significant results from the analysis. Our FOT dataset
presents 50 test results per 125 configurations, which provides expansive configuration space and ample
test data.

CPS optimization based on data analysis Although the CPS is expected to achieve its goals
reliably, we have experienced that goal achievement significantly varies by the configurations of the
internal controllers and the external environment. Unfortunately, engineers cannot accurately predict
CPS behavior in the real world before runtime. Therefore, the runtime data can optimize the CPS for

the operational environment [98], and related studies can use our dataset for this purpose. In particular,

68



machine learning techniques for optimizing CPS configurations may use our dataset for training [99].
Real-time CPS monitoring and adaptation can also use our dataset by streaming the FOT logs [100, 29].
In addition, the FOT logs are actual multivariate time-series data, so there could be many possible

applications [101].

Design of domain-specific FOT methodologies Not limited to the specific applications described
above, our dataset and hands-on experience in this paper can guide a domain-specific FOT methodology
design [86]. In this paper, we focused on a scenario of repeating many FOTs over the configuration
space of a multi-controller CPS. Although this scenario does not represent all situations, we believe that

practitioners can design their own FOT methods based on the data and experiences described here.

5.5 Experiment Settings for Environment Model Generation

5.5.1 Overall Experimental Process

Using the experimental environment and FOT logs introduced in the previous sections, this empirical
evaluation simulate the whole process of CPS controller verification for each subject systems. Lane-
keeping system and adaptive cruise control systems are verified their safety and passenger comfort. The
two goals are measured from the operational logs collected by FOTs or simulations using environment
models, respectively. After the FOT-based and simulation-based verification results are obtained, those
two results are compared to quantify how accurate the simulation-based verification results are. The
similarity metric will be introduced in the next section. The point is that the more similar the two
verification results, the more accurate the environment model and the model-based verification are.

To answer RQ1, we run ENVI with all possible ENVI parameter settings. There are 18 different
configurations of ENVI, so we run ENVI 18 times with different configurations and compare the results in
terms of the verification accuracy. Finally, we analyze effective ENVI parameter settings for simulation-
based verification.

To answer RQ2, ENVI optimized by RQ1 results is compared with the other environment model
generation methods (baselines). They are compared in terms of the verification accuracy. Here the CPS
controllers used to collect small seed logs are verified by many simulations.

To answer RQ3, we iteratively run ENVI and the baselines with different volumes of seed logs to
investigate the data efficiency for environment model generation.

To answer RQ4, we generate environment models using ENVI and baselines and use the environment
models to simulate and verify unseen CPS controllers that have not been used for the seed log collection.
We run environment model generation methods including ENVI many times for all possible combinations
of seen controller subset and unseen controller under verification, based on the FOT logs collected in
Section 5.4. Finally, the verification accuracy of ENVI and baselines are compared.

TO answer RQ5, the all possible combinations of seen controller subset and unseen controller un-
der verification, used in RQ4, are analyzed to search effective seed log collection strategies for unseen
controller verification using ENVI. Finally, an effective seed log collection guideline is given for ENVI

users.

69



5.5.2 CPS Goal Verification Accuracy Metric

It is essential to assess the accuracy of the ENVI-based verification for all RQs. To do this, we
measure the (dis)similarity between the FOT-based verification and ENVI-based verification results. The
more similar the ENVI-based and FOT-based verification results, the better ENVI accurately mimics
the real environment, when the same CPS controller is verified.

Specifically, we define an imitation score (i.e., the smaller the better) of an environment model 4, as
ImitationScore(0,) = D (Y(My, @) || (M, ¢))

where (M, ¢) is a simulation-based verification result of CPS controller goals ¢ using J, generated by
the environment model generation method under analysis (e.g., ENVI), and ¥(M,., ¢) is an FOT-based
verification result on the same goals as a reference. Note that executions of M, and M, are nonde-
terministic as discussed in Chapter 3, so we define (M, ¢) and (M., $) as joint distributions of the
passenger comfort and safety assessments obtained from multiple simulation and FOT logs, respectively.
Though the distributions of goal assessment results can be further analyzed to get a boolean or numeric
verification result by statistical verification methods (e.g., SMC) as described in Section 4.5.5, the distri-
butions of the goal assessment results are directly compared to evaluate ENVI more rigorously at a lower
level in our experiments. The dissimilarity of ¥(M,, ¢) and ¥(M,, ¢) is quantified by Kullback-Leibler
divergence (KL divergence, D) [102]. D1 (P]|Q) is a measure of divergence of a probability distribu-
tion P from a reference distribution @, widely used in imitation learning [103, 104]. If P is identical to
Q, Dk 1(P||Q) is zero; the divergence increases as their dissimilarity increases. Thus, the better ENVI
mimics the real environment so that (M, @) is identical to ¥ (M, ¢), the smaller the KL divergence
Dy, (Yv(My, @)||v(M,, ¢)), which is the imitation score.

We interpret the experiment results based on the imitation score to answer the three research
questions. In RQ1, we compare different ENVI configurations based on the imitation score. In RQ2,
we evaluate the accuracy of ENVI-based verification of seen controllers based on the imitation score.
In RQ3, we also analyze the change of the imitation score according to the number of training FOT
logs to evaluate how efficient the data-driven model generation is. In RQ4, we evaluate the accuracy of
ENVI-based verification of unseen controllers based on the imitation score. In RQ5, we search effective

seed log collection strategies based on the imitation score.

5.5.3 Comparison Baselines

From RQ2 to RQ4, we compare ENVI with two alternative data-driven environment model gener-
ation approaches using Machine Learning (ML) techniques other than IL. In terms of ML, the environ-
ment model generation problem defined in this paper can be seen as a regression problem that infers
the future based on the past data. Therefore, engineers can generate the environment model 4, using
regression models without IL. We consider two well-known regression models, i.e., Polynomial Regres-
sion (PR) [105] and Random Forest regression (RF) [106]. We used pre-defined PR and RF APIs in
Scikit-learn library [107]. All experimental settings except for the parts related to the learning method
(e.g., the volume of training data) are the same as ENVI.

In addition to PR and RF, we make a random environment model. The random environment
model does not require data or domain knowledge for modeling but changes the environmental state
randomly regardless of the previous CPS actions. Injecting random environmental state observation to

CPS controllers is often used to verify the possibility of unknown malfunctions of the controllers [108, 109].

70



However, it does not represent the continuous interaction of the CPS and its operational environment,
making the verification result imprecise or rarely reproduced in reality [109]. Therefore, we use the

random environment model as another baseline ignoring the CPS-ENV interaction defined in Chapter 3.

5.5.4 Environment Imitation Settings

As described in Chapter 4, the CPS goal verification using ENVT follows five main stages. Remind
the second, third, and fourth stages have user-configurable parameters, so we make total 18 ENVI versions
for all possible combinations (2 model structures, 3 IL algorithms, and 3 selection criteria) for empirical

analysis. In the following subsections, we explain our experimental setup for each stage in detail.

Collecting Seed Logs

For case study 1, we run a robot vehicle with an LKS on a straight road for about 5 seconds
for an FOT. At 20 Hz, the following information is recorded in the logs: (1) a lane color value ¢;
as an environmental state observed by the vehicle’s color sensor and (2) a turning rate r; as a CPS
action decided by the vehicle’s controller. Therefore, an FOT log is a sequence of state-action pairs
((co,70),- -, (e, rp)) where T is the FOT duration.

For case study 2, we run an ego vehicle equipped with an ACCS and another moving front vehicle,
one meter apart at the beginning, on a three-meter straight road until the front vehicle reaches the end
of the road. One FOT takes about 10 seconds. The ego vehicle records (1) a distance to the front vehicle
d; observed by the distance sensor and (2) a driving speed s; as a CPS action at 20 Hz. Therefore, an
FOT log is a sequence ((dg, So), - -, (dr, sT)) where T is the FOT duration.

For each of the three versions of the two systems, we conduct 50 FOTs, so we collect a total of 150
logs (3 software versions and 50 FOTs) for each subject system. Among the 50 FOT logs of each version
of the controllers, 40 logs are used as seed logs, and 10 logs are used for testing (i.e., evaluating) the
model. In the seed logs, 20 logs are used for model training, and the remaining 20 are used for model
selection (i.e., validation). The dataset of the three versions is used together by ENVI to generate an
environment model commonly used to verify the three controller versions. In addition, we perform 5-fold

cross-validation, repeating the experiments five times with different splits of the datasets.

Defining Environment Model Structure

As for the model structure, we set the length of history [ as 10, meaning that the input of a virtual
environment model is a 20-dimensional vector (i.e., a sequence of 10 state-action pairs). Tables 5.4
and 5.5 summarizes structures of the deterministic and nondeterministic environment model structures,
respectively. We tried to design the hidden layers straightforward. We decided to use a 1D convolution
layer for reducing noise and selecting important features of the time series data and fully connected
layers for forward propagation. The deterministic model directly calculates the next environmental state
from the historical data. On the other hand, the nondeterministic model calculates a mean and standard

deviation of the next state and randomly selects a state based on the normal distribution.

Training Environment Model

We implement IL algorithms using PyTorch library [110]. BC uses the ADAM optimizer [56] to
update environment models. Since GAIL needs a policy gradient algorithm to update models, we use a

state-of-the-art Proximal Policy Optimization (PPO) algorithm [58]. As for the hyperparameters of the

71



Table 5.4: Deterministic environment model structure

id input id layer output shape
0 input (2, 10)
1 0 1D convolution layer (16, 8)
2 1 Max pooling layer (16, 4)
3 2 Flatten layer (64)
4 3 Fully connected layer (512)
5 4 Fully connected layer (512)
6 5 Fully connected layer (1)

Table 5.5: Nondeterministic environment model structure

id input id layer output shape
0 input (2, 10)
1 0 1D convolution layer (16, 8)
2 1 Max pooling layer (16, 4)
3 2 Flatten layer (64)
4 3 Fully connected layer (512)
5 4 Fully connected layer (512)
6 5 Fully connected layer (u) (1)
7 5 Fully connected layer (o) (1)
8 6,7 Normal distribution sampler (1)

72



Table 5.6: Hyperparameter values for IL algorithms

Algorithm  Hyperparameter Value
BO Number of training iteration 500
Learning rate 0.00005
Number of training iteration 500

Model & discriminator learning rate  0.00005

PPO num. policy iteration 10
GAIL PPO num. discriminator iteration 10
PPO reward discount y 0.99
PPO GAE parameter A 0.95
PPO clipping € 0.2

IL algorithms, we use default values from the original papers [58, 50]. Table 5.6 shows the hyperparameter

values used in our evaluation.

Selecting the Best Environment Model

When the IL algorithm is finished, trained d,s are evaluated based on the validation logs to select

the best one. Based on the three selection criteria under analysis, three d,s are chosen.

Verifying CPS Goals

Each version of LKS and ACCS is simulated multiple times with the environment models. For the
simulation, the initial inputs of the environment models are given from the testing dataset described in
Section 5.5.4. Each simulation log is then used to assess both passenger comfort and safety. As described
in Section 5.5.2; the joint distribution of the passenger comfort and safety assessment results based on
the multiple simulation logs is the verification result ¢ (M,, ). In contrast, the verification result based
on the full testing FOT logs is ¢(M,., ¢).

5.6 FEvaluation Results

5.6.1 RQ1: User Parameter Analysis

RQ1 aims to investigate the effect of ENVI parameters on the imitation score and suggest optimal
configurations of ENVI. To answer RQ1, we make all possible configurations of ENVI parameter settings
and compare them statistically in the imitation score.

Figure 5.15 shows the comparison of 18 ENVI configurations in terms of the imitation score in the
verification of LKSs (Figure 5.15a) and ACCSs (Figure 5.15b). ENVI is configured by an IL algorithm
(BC, GAIL, or BCGAIL), a model structure (deterministic (det) or nondeterministic (nondet)), and a
model selection criterion (1-tick loss (loss), Euclidean distance (eucl), or DTW). For each case study,
an ENVT configuration is evaluated 15 times (3 different controller versions and 5-fold cross-validation).
The spread of imitation scores of the ENVI configurations is shown on the boxplot in the log scale. For
each case study, the ENVI configurations are sorted by the average imitation score. A configuration

achieving the smallest imitation score is the optimal.

73



Imitation score (KL-divergence)
—{H
H Ho
i
Hle
+{ Ho
Hjoo
HHe
—{H
{1} o
HHo
il
H TH
HH

* * N A O O > O
\0"96 S & ¢ s & s & \066 S & S Nl & & & \Oé’J
PO & & &7 &7 & e & & & &7 &7 &7 & &

oob Q°° Qo(\ on\ o°° ro &7 &7 N Qo“ S N &7 N (\o‘\
R T S % & &N @O R
& F K S & @ c

& & 9
ENVI configurations
(a) Case study 1
14
o

A‘IO fo) fo) 6
[0]
£ 10" P o © ) o —
2 4 o o (o] (o) o] ¢
o 10
=
hel
T 8
g 10
() 6
= 10 8
(8]
7] 4 [o]
c 10
il
s
£

RS Q,o‘} & ep‘} N & 0\»‘} & ep‘} S ¢ ,z,oc} &
be} 6'2’\ & & bé&/ bé’\/ be'\/ & / bé}/ 66&/ > (\bé} 60\/ QbQ,\/ 60\/ > 60\ 7 6?’\/
(\OQ 000 S ?3\/ s ?3\, 7 YS\/ 7 %C) 7 Q)O (\OQ QOQ Q)O 7 & & & ?}\/ ’ ?\\/ 7 ?\\/ 7 (\ok\
7 N QO § 00 <27(,/ Q,Q/ @O/ % N [©) [} 7
& X F > ? X o
%C) 00 @O

ENVI configurations

(b) Case study 2

Figure 5.15: Imitation scores of all possible configurations of ENVI. The asterisk (*) highlights a set

of optimal configurations with no statistically significant differences.

Figure 5.15 highlights optimal configurations with asterisks (*) that outperform the others in each
case study. The Kruskal test selects a set of best configurations that do not have a statistically sig-
nificant difference in terms of the imitation score. BCGAIL_nondet_loss and BCGAIL_nondet_dtw are
optimal configurations in case study 1. In case study 2, three configurations using BCGAIL and non-
deterministic model structure are optimal regardless of model selection criteria (loss, eucl, and dtw).
BCGAIL_nondet_loss and BCGAIL_nondet_dtw configurations are common optimal in both case stud-
ies. It means that ENVI with these configurations could generate the most accurate environment models
in both cases. Interesting is that ENVI versions that train nondeterministic environment model structure
using BCGAIL algorithm are the common top-3 configurations in both case studies. It seems that the

environment model structures and the IL algorithms greatly influence accuracy of the model, but the

74



Table 5.7: Confidence level (p-value) of effect of the ENVI parameters on the imitation score and rank

of the influence. p-value is highlighted in bold when it is smaller than 0.05.

ENVI parameter Case study 1  Case study 2 Rank of the influence on the imitation score
Model determinism 3.201e-10 4.661e-01 2
IL algorithm 3.770e-16 5.192e-12

Model selection criteria 3.823e-04 4.688e-01 3

model selection criteria have less impact on the score.

3
oo

5
o

5
o

8 8 8
o
10 g 10 8 10 g o 8 8
©? 8 & 08 o o7 © 3 8
3 g 3 g 3 g 3 ° 3 o 8 @ o o g
8 8 3 3 8 8 ) b4
6 .2 S 5 .2 S 4010 ° S o0 O S w0 O
S 10 o S 10 g g 10" o o g 10 S 10 S 10
) g 1] ) ] ) )
s H g 2 o 8 E E H
3 o 5 3 o 3 e 3 e 3 e
3 ® = b4 o = 10 3 10 3 10
= < = g = =
o 10 o 10 o 10' o o °
g g g 5 10° 5 10° 5 10°
8 8 8 8 8 8
3 % 3 H H ° ]
c c c c c c
S e S 2 10! 8 £ 10 £ 10
£ o £ o £ o £ £ 2
E 10 E 10 E 10 £ H E
10° 10° 10°
y . B 10° 10° 10°
10 10 10
EE & & & L G & &
& <& & & S & &\\o K &
¢ & @ < e o S &
& <f &
& S
a) Model determinism b) IL algorithm c) Validation criteria a) Model determinism b) IL algorithm c) Validation criteria
(a) Case study 1 (b) Case study 2

Figure 5.16: Comparison of imitation scores achieved by different ENVI parameter settings. The

asterisk (*) highlights parameter settings that are statistically significantly better than the others.

To further analyze the effect of each ENVI parameter on the model generation, we analyzed the
variance of each parameter’s imitation score. Figure 5.16 shows the spreads of the imitation score achieved
by each ENVI parameter setting, and Table 5.7 summarizes the statistical test (Kruskal test) results of
the ENVI parameters’ effects on the imitation score. The test’s null hypothesis is that the distributions
of the imitation score achieved by different ENVI parameter settings are identical. Suppose the p-value
of the test is smaller than 0.05. In that case, we can reject the null hypothesis, so the imitation score is
highly affected by different ENVI parameter settings. It means that users should carefully configure the
ENVI parameter.

Both Figure 5.16 and Table 5.7 show magnitude of the effect of ENVI parameters on the imitation
score and the optimal parameter settings. First, the IL algorithm affects the imitation score most
significantly in both case studies. Especially, the BCGAIL algorithm generates the environment model
most accurately. Following the IL algorithm, the model structure influences the imitation score. In
particular, it is generally better to train the nondeterministic environment model in case study 1. In
case study 2, the two model structures do not have a significant difference in the average imitation score,
but the nondeterministic environment model could achieve a much lower minimum imitation score than
the deterministic model. The model selection criteria have the smallest effect on the imitation score in
both case studies. All three criteria do not make a difference in the ENVI’s performance in case study
2, while using DTW is slightly better in case study 1. This seems to be because DTW can most flexibly
compare the noisy FOT and the simulation logs [61].

75



The RQ1 results first show that the IL algorithm significantly impacts the performance of ENVI. We
found BCGAIL algorithm outperforms the other algorithms to generate accurate environment models.
Indeed, the BCGAIL algorithm is known to mimic expert behavior better than BC and GAIL [52]. We
also confirm that it effectively solves the virtual environment model generation problem. In addition, the
nondeterministic environment model structure is more suitable for mimicking the real FOT environment.
The real environment state transition is also nondeterministic because CPS FOTs suffer from uncertain-
ties such as sensor noise or non-static road friction. Therefore, the nondeterministic environment model
seems appropriate to mimic the uncertain environment. Finally, we can say that the three model se-
lection criteria introduced in Section 4.5.4 have little impact on ENVI’s performance, while DTW is
recommended in case study 1. However, it also implies that the rationales behind the three criteria are
all reasonable.

In RQ1, we empirically suggest a guide to optimize ENVI regarding the imitation score based
on two case studies. Although the guide is based on our limited case studies and all the parameters
introduced in Section 4.5 are still meaningful in IL, we provide a starting point for the novel use of IL
in the environment model generation for CPS goal verification. The following subsections examine how
accurate and efficient CPS goal verification using ENVI optimized by BCGAIL_nondet_dtw is.

The answer to RQ1 is that ENVI’s imitation score is most influenced by the IL algorithms,
followed by the model structures and selection criteria in both case studies. Statistically, BCGAIL
algorithm, the nondeterministic model structure, and DTW model selection criterion are first

recommended, based on our empirical evaluation.

5.6.2 RQ2: Verification Accuracy for Seen CPS Controllers

RQ2 aims to investigate how well environment models generated by ENVI mimic the real envi-
ronments and how accurate the ENVI-based verification is. To answer RQ2, ENVI is configured by an
optimal setting found in RQ1 (BCGAIL_nondet_dtw). We analyze the ENVI-based verification compared
to the baselines.

Figure 5.17 visualizes multiple passenger comfort and safety assessment results obtained from sim-
ulations and FOTs. The x-axis of a scatter diagram is the safety measure (i.e., maximum displacement
(mm) from the lane center for the LKS and minimum displacement (mm) from the front safety distance
for the ACCS), and the y-axis is the passenger comfort measure (i.e., maximum jerk (mm/ms3) for both
case studies). A FOT/simulation-based verification result is visualized as X/O-shaped dots, respectively.
As already described in Section 5.5.4, 10 FOT logs for each controller version are used for testing, so
there are 10 X-shaped dots of the same color distinguishing the controller version in each scatter diagram.
Based on the testing FOT logs, the environment models under comparison simulate the CPS controllers,
marked as 10 O-shaped dots of each color. However, ENVI, used here, trains the nondeterministic en-
vironment model, so we repeat the simulation five times using the same testing FOT logs to show the
results mitigating the nondeterminism, 50 O-shaped dots are shown in the ENVI diagrams. Remind the
virtual environment model generation goal is to make the simulation-based verification result similar to
the FOT-based results. Therefore, the closer the distributions of the O-shaped dots and the X-shaped
dots, the more accurate and realistic the simulation-based verification.

In Figure 5.17, we can see that the distribution of ENVI’s verification results more overlapped with

the distribution of FOT verification results than the baselines. This shows that ENVI-made environment

76



Random PR RF ENVI

X X

'S o x o x o
4 v 0.00015 X ¥ 0.00015 X ¥ 0.00015
£ 0.0006 £ X x £ X x &
g : £ £
= ~= 0.00010 § X = 0.00010 §»:( ~~ 0.00010
¥ 0.0004 * % & ¥ % X ~ 0
2 Qo 0 2 @ £
= c X  *x0 o = % x = X
2 0.0002 g 0.00005 X x&_ x o E 000005 X X * g 0.00005
E XXX 3 X ® ® = * ofP H
2 sox X >§<;§§< x x| | 2 - 2 L 4 2
5 10 15 0.00000 5 10 15 0.00000 5 10 15 0.00000 5 10 15
Maximum displacement (mm) Maximum displacement (mm) Maximum displacement (mm) Maximum displacement (mm)
x Sys.ver.1FOT % Sys.ver.2 FOT x Sys.ver. 3FOT
O Sys. ver. 1 Simulation ©O  Sys. ver. 2 Simulation ©O Sys. ver. 3 Simulation
(a) Case study 1
Random PR RF ENVI
0.06 0.006 0.006 0.006
— — X —~ X —~
" 005 " 0,005 " 0.008 " 0008
£ o ° £ £ £
€ 004 € 0.004 * € 0.004 * € 0.004 X
£ £ £ £
¥ 0.03 %< 0.003 %< 0.003 < 0.003
2 X 2 2 2,
E 0.02 E 0.002 E 0.002 E 0.002 e
E E E E b
50T« " % 0.001 K & i % 0001 g i % 0.001 § ‘
= 0.00 = ® = 0.000 a__a = 0.000 i :go a2 = 0.000
0 100 200 0 100 200 0 100 200 0 100 200
Minimum displacement (mm) Minimum displacement (mm) Minimum displacement (mm) Minimum displacement (mm)
X Sys.ver.1FOT % Sys.ver.2 FOT %  Sys.ver. 3FOT
O Sys. ver. 1 Simulation O  Sys. ver. 2 Simulation ©O Sys. ver. 3 Simulation

(b) Case study 2

Figure 5.17: Comparison of FOT-based and simulation-based passenger comfort and safety verification

results

models mimics the real environment well, so the verification results based on the simulations using the
model are also realistic compared to the baselines. On the other hand, the vehicle was evaluated as
unrealistically unsafe and uncomfortable by the random model, since the environmental state oscillates
randomly regardless of the CPS actions. PR and RF models change the verification results depending
on the controller versions. However, the distribution of verification results of the two models rarely
overlap with the FOT-based results. In particular, the PR and RF models do not properly imitate the
uncertainty that emerges in the real world, so even if the test is repeated, many simulation results are
mostly the same, which is not the case in reality.

Table 5.8 shows the error of the simulation-based verification to interpret how accurate the simulation-
based verification is quantitatively. Simulation-based comfort and safety assessment results, O-shaped
dots in Figure 5.17, are compared with corresponding FOT-based assessment results, X-shaped dots in
Figure 5.17, and their mean differences are the verification error. As already visually confirmed in Fig-
ure 5.17, Table 5.8 shows that ENVTI’s verification errors are smaller than the baselines for all CPS goals
and case studies; it means that the ENVI-based verification is the most accurate. For example, when
the real minimum distance between the front vehicle and the adaptive-cruise vehicle under verification
is 200mm, which is the safe distance goal in our experiment, the simulated distance could be about
210mm or 190mm with the error of 10mm. Although the influence of the error varies by domain, the
error of ENVI-based verification in our case studies is not significant for analyzing the controllers under
verification.

In addition to the verification error, the accuracy of the models can be also compared in terms of the

imitation score considering the two verification goals together. Figure 5.18 shows the log scale spreads

7



Table 5.8: Comparison of verification errors of ENVI and baselines. The lowest error for each case

study and verification goal is highlighted in bold.

Verification error

safety (mm) passenger comfort (mm/ms®)

Random 6.04010 0.00055
s PR 2.36947 0.00005
éé RF 1.66293 0.00003
ENVI 1.18543 0.00002
Random 86.06980 0.04900
? PR 28.33626 0.00233
éé RF 18.76562 0.00159
ENVI 10.49110 0.00121

of the imitation score of ENVI and the baselines. The theoretically lowest (best) imitation score is zero.
As already confirmed in the previous results, ENVI achieves the best imitation scores in overall in both
case studies. PR and RF are better than the random model but not as effective as ENVI to mimic the
real environment well.

RQ2 results show ENVI can generate virtual environment models that can perform accurate simulation-
based verification. When verifying the passenger comfort and safety of the two ADAS using the ENVI-
made environment model, the simulation-based verification results were similar to the FOT-based results
visually and quantitatively compared to the baselines. Therefore, engineers can accurately verify CPS

controllers at a low cost with simulation using ENVT instead of FOT.

The answer to RQ2 is that ENVI can generate accurate environment models from the seed
logs. Specifically, the ENVI-based verification results achieves smaller verification error and lower
imitation scores than the baselines for all case studies and verification goals. Thus, ENVI makes
CPS goal verification efficient by replacing the real environment with the virtual environment

model while keeping the verification result similar to reality.

5.6.3 RQ3: Model Generation Efficiency

RQ3 aims to investigate the efficiency of ENVI in terms of the number of FOTs required for col-
lecting the training data for environment model generation. Collecting seed logs is a bottleneck in the
ENVI process, which is laborious and challenging to accelerate. Therefore ENVI aims to generate an
environment model with as small seed logs as possible. To answer RQ3, we reduce the number of FOT
logs given to ENVI as training data from 20 to 1 and analyze the change of imitation score compared
to the baselines. Remind 20 training and validation FOT logs of each controller version were given in
RQ1 and RQ2 as described in Section 5.5.4. However, the number of FOT logs for training the envi-
ronment models varies in RQ3, while the testing logs are the same. ENVI in RQ3 also uses the optimal
configuration found in RQ1.

Figure 5.19 shows the change in the average imitation score according to the number of FOT logs

for training and validation in two case studies. Since the random environment model does not require

78



)

10* I%I 3
Q\

H>
HH

(0]
3
10 12
10 (0]

© 0 o
e 2 400
S 102 S
& 1° &
= = 8
© T 10
< <
(0] o 6
5 5 10
o o
] a
c c
K] K]
= =
£ £
E E

_
o
o

10
107
Q Q- X N N Q- X
(b(\bo < <& @e (0060 < <& @e
<& <&
Model generation method Model generation method
(a) Case study 1 (b) Case study 2

Figure 5.18: Comparison of ENVI and baselines in terms of imitation score of seen controller verification

training data, the score does not vary depending on the number of training FOT logs.

In both case studies, ENVI achieves smaller imitation scores than baselines even when the number
of training FOT logs is small overall. In addition, even if ENVI uses only one FOT log for the model
generation, it achieves the imitation scores similar to the baselines with 20 FOT logs. It means that the
verification accuracy of ENVI with only one FOT log could be similar to the accuracy of PR and RF
shown in RQ2. It implies that IL is very efficient in inferring the real environmental behavior from the
small data. From this, we can see that even when small FOT logs are available, ENVI can mimic the
real environment well. However, using PR- or RF-made environment models is still better than using
random models for verifying CPS controllers.

RQ3 results show that ENVI can generate more accurate environment models with a small amount
of seed log data than the baselines. Therefore, ENVTI is promising to perform accurate simulation-based
CPS goal verification using only a small amount of data when the FOT is costly. It will significantly
reduce the cost of CPS goal verification. In addition, the baselines are not as efficient as ENVI, even
in our simplified case studies, so ENVI is more applicable in practice. However, applying ENVI to the

verification of more complex CPS is still one significant future work.

The answer to RQ3 is that ENVI can generate environment models with a small number of seed
logs compared to the alternative data-driven environment model generation techniques. There-
fore, engineers can reduce the cost of FOTs for collecting training data for the environment model
by using ENVI.

79



3 3 10
o c
S 12 S
2 2 10
° === Random °© === Random
< — PR < — PR
o — RF o 10’ —— RF
;
§ 10 § — ENVI
S 5 10°
g g
E =
i = 3
10° 10
1357 9113151719 1357 9113151719
Number of training FOT logs Number of training FOT logs
(a) Case study 1 (b) Case study 2

Figure 5.19: Comparison of training data efficiency of ENVI and baselines

5.6.4 RQ4: Verification Accuracy for Unseen CPS Controllers

RQ4 aims to investigate the verification accuracy of unseen controllers using ENVI. The ‘unseen
controllers” means that CPS controller variations configured by configurations that have not not been
used for the seed log collection, as discussed in the extended problem definition of ENVI in Section 3.4.2.
Therefore the environment model have not interacted with the unseen controllers during training, but
they interact to verify CPS goal achievement of the unseen controllers. To answer RQ4, we select all
possible configurations subsets that can be selected from a set of five configurations of interest, and
use them to collect seed logs and generate environment models. The generated environment model is
used to verify CPS controller variations using the remaining configurations that are not selected in the
configuration for seed log collection. The verification results obtained are analyzed and their accuracy
is evaluated by imitation score.

Figure 5.20 shows the imitation score of ENVI and baselines for each case study. In both case studies,
the imitation scores of ENVI are lower than that of other environmental model generation methods, in
general. This shows that ENVI-made environment models are more accurate than the baselines in the
verification of unseen controller variations that have never been used for training environment models.
This is because IL is more appropriate to infer a general environmental behavior mechanism for whole
configuration space than the other methods.

The RQ4 results show that environment models generated using ENVI can also be reused for ver-
ification of new CPS controllers that have not previously been FOTed. ENVI achieves the extended
problem definition discussed in Section 3.4.2 better than other methods. Recap the environment model
should perform accurate verification for all CPS controller configurations of interest. The ENVI-made
environment model can be reused for the verification of all configurations of interest. Therefore, ENVI
can significantly reduce the CPS goal verification by replacing the FOTs to the simulations using the

virtual environment models.

80



-
IS)
o
o

Imitation score (KL-divergence)
o, 3. 3,
@ O
Imitation score (KL-divergence)
3 3, 3, 3, °
(o] (o]e]
—_| Jemwaw
(e

10
N Q- < N & Q& < N
,bobo < <& ((/% é‘bo N3 <& (oe
& <
algo algo
(a) Case study 1 (b) Case study 2

Figure 5.20: Comparison of ENVI and baselines in terms of imitation score of unseen controller

verification

The answer to RQ4 is that ENVI can generate accurate environment models from the seed logs, as
shown in RQ2, and the models can be reused to verify unseen CPS controller variations accurately.
Specifically, the ENVI-based verification results achieve lower imitation scores than the baselines
for all case studies. In other words, ENVI better achieves the extended problem definition of
environment modeling than the baselines. Thus, reusing the ENVI-made environment models
can significantly reduce the cost of CPS goal verification of all CPS controller configurations of

interest.

5.6.5 RQ5: Seed Log Collection Strategy

RQ5 aims to investigate effective seed log collection strategies for unseen controller verification using
ENVI. In RQ4, given the same seed logs, we see that the ENVI-made environment models can be reusable
for the verification of unseen controllers not used in seed log collection, and the verification results of
ENVI were more accurate than other methods. However, the accuracy of the environment model for
unseen controller verification is still affected by the configurations used in the seed log collection. For
example, when there are CPS controller configurations of interest from No. 1 to 5, an environment
model generated from seed logs of No. 1 and No. 3 controller variations and another environment model
generated from seed logs of No. 1 and No. 5 variations show different accuracy in the verification of
No. 2 contorller variation. Therefore, RQ5 tries to find effective seed log collection strategies for unseen
controller verification to guide ENVTI users.

To answer RQ5, we generate many environment models from the seed log collection using all possible

configurations subsets that can be selected from a set of five configurations of interest, like RQ4. Then

81



to find effective seed log collection strategies, we label tags indicating a specific situation (i.e., strategy)
of seed log collection on each configuration subset. Specifically, we put three different kinds of labels
indicating seed log collection strategies. The first label is the number of configurations. From five
configurations under experiment for each case system, one to four configurations can be used for seed log
collection except at least one configuration under verification. The second label the distance between seen
and unseen configurations. How far is the configuration under verification from the configurations used
for seed log collection can affects the accuracy of the environment model. The last label is ‘interpolation’
or ‘extrapolation’. Interpolation indicates a configuration under verification is between two or more
seen configurations in a continuous configuration space. On the other hand, extrapolation indicates
a configuration under verification is outside of the range covered by the seen configurations in the
configuration space. For example, if configuration No. 2 and No. 4 were used for seed log collection,
verifying No. 3 configuration is the interpolation but verifying No. 1 and No. 5 is the extrapolation. We
mark each configuration subset used for seed log collection by these three labels to specify certain seed
log collection strategies. We then analyze the change of imitation score according to the labels of seed

log collection strategies.

[e]e sl¢)
(©]

-
IS)
o
(©]

(=}

a

Imitation score (KL-divergence)
I =N
:|—()3 QOO A O O
(e}
Imitation score (KL-divergence)
) )
(o)e]

S
o

10

10

N ) ) ™ N v ) ™
len_tr (focus:ENVI) len_tr (focus:ENVI)

(a) Case study 1 (b) Case study 2

Figure 5.21: Comparison of ENVI imitation score according to number of CPS controllers used for seed

log collection

First, figure 5.21 shows the change of ENVTI’s imitation score according to the number of CPS con-
troller variations used for seed log collection among total five variations under analysis. ENVI generally
received lower imitation scores as more controller variations were used to collect seed logs. This means
that the more controllers are seen to the environment models during training, the more likely the en-
vironment model can accurately interact with unseen controllers. Engineers can accurately verify the
unseen controller with the ENVI-made environment model as shown in RQ4, but still can expect to

generate more accurate environment models as more controller’s FOT logs are collected during training.

82



(N
(]

(¢]

S
o
T toamo
Sw 5\0’\
(¢]
o

10

Imitation score (KL-divergence)
Imitation score (KL-divergence)
)

10
107"
N ) 5 X N 9 > ™
min_config_dist (focus:ENVI) min_config_dist (focus:ENVI)
(a) Case study 1 (b) Case study 2

Figure 5.22: Comparison of ENVI imitation score according to the distance between seen configurations

and an unseen configuration under verification

Second, figure 5.22 shows the change of ENVI’s imitation score according to the distance between
the seen and unseen configurations. There can be more than one seen configurations, so the minimum
distance between the seen and unseen configurations were used. ENVI obtained a lower imitation score
as the distance between the seen and the unseen configurations on the configuration space was closer.
This means that engineers can expect higher verification accuracy if they verify the an unseen CPS
controller configuration close to the configuration used in the seed log collection.

Last but not least, figure 5.23 compare the ENVI’s imitation scores of interpolation and extrapolation
verification. The results show that interpolation verification achieves significantly lower imitation scores
than extrapolation verification. This means that more accurate verification can be expected when the
unseen controller to be verified is within the range of controllers used in the seed log collection. This
also reveals a limitation that ENVI’s environment model is reusable within the configuration range seen

by the seed log within the configuration space of interest but may be less accurate outside the range.

e N

RQ5 provides effective seed log collection strategies in which unseen verification can be accurate
from three perspectives. First, a more accurate environment model is generated when more con-
figurations are used for seed log collection. Second, the closer the configurations used for seed log
collection and the configuration under verification, the more accurate the ENVI-based verifica-
tion results. Finally, in the case of interpolation verification, where the controller configuration
to be verified is within the range of the seen configuration, a more accurate environmental model
is generated. For effective unseen controller verification using ENVI, users are recommended to

collect seed logs considering these three guidelines.

83



10 1011
@ @
2 2
[ [
o o 2 ¢
2 2
2 : 2
510" 2
< ? < 10
o 8 o
] Q (0]
a 3 s o
c c 10
kel kel
s 0 S
E E 4
10’
107"
(] < 2 (4
Q’b\% ««\) Q@% &\\)
interpolation (focus:ENVI) interpolation (focus:ENVI)
(a) Case study 1 (b) Case study 2

Figure 5.23: Comparison of ENVI imitation score of interpolation verification and extrapolation veri-

fication

5.7 Threats to Validity

In terms of external validity, our LEGO-lized autonomous vehicle and two driving assistance systems
under verification are simplified for representing the real CPS and software controllers. Although they
may differ from the real CPS (e.g., autonomous vehicle), it represents CPS software controllers in practice
in terms of continuous interaction with the environment. Applying ENVI to more complex CPS could
show different results, but the applicability of ENVI for the simulation-based verification shown in this
paper is still valid for CPSs with such software controllers. However, additional case studies with more
complex CPS are required to improve our results’ generalizability.

In terms of internal validity, the goal verification results based on specific autonomous driving goals
(e.g., passenger comfort and safety) could be a potential threat since the evaluation of the driving
assistance controller’s goal could be biased to a specific aspect of driving. To mitigate this threat, in our
evaluation, we chose two popular and important goals motivated by industrial standards such as ISO
11270 for LKS [111] and ISO 15622 for ACCS [112] specifying acceptable safety and comfort. We then
aggregated the results on both goals to comprehensively understand whether the subject controllers work
well or not. Hyperparameter value settings for IL (e.g., number of iterations, learning rates, Etc.) could
be another potential threat to the internal validity since the performance of machine learning can largely
depend on hyperparameter values. We used the values recommended in the original studies [58, 50].
Nevertheless, hyperparameter tuning is an important research field, so it remains an interesting future

work.

84



5.8 Summary

In this chapter, we evaluated our approach ENVI with two case studies of real CPS goal verification.
The case studies verified LEGO-lized autonomous vehicles equipped with a lane-keeping system and an
adaptive cruise control system. The case studies evaluated ENVT in five perspectives, 1) impact of ENVI
user parameter, 2) verification accuracy of seen controllers, 3) model generation efficiency, 4) verification
accuracy of unseen controllers, and 5) effective seed log collection strategies. In summary, the results
show that the CPS goal verification using ENVI-made virtual environment models is more accurate than
the baselines, even when only a few FOT logs are used for training the models. Therefore, ENVI can

reduce the cost of CPS goal verification but remain the verification accuracy.

85



Chapter 6. Conclusion

6.1 Summary of Achievements

First, we conducted a systematic literature review in environment modeling and investigated how
recent studies have described the concepts of the environment. In addition, we explored how the studies
represented the environment as models. Following a systematic review protocol, we selected and analyzed
128 primary studies. We provided five common characteristics of the environment, two common sources
of environmental uncertainty, and 14 reference environment models. We also identified four common
perspectives of the environment specification. Finally, we compared the related environment modeling
approach to our approach.

Second, we proposed a formal model of the interaction between the CPS and its environment,
a CPS-Environment interaction model, and a formal framework of the CPS goal verification process.
We formally defined the environment model generation problem based on the formal framework. The
original environment modeling problem definition was extended for a case when the CPS controller under
verification is user-configurable software.

Third, we proposed ENVI (ENVironment Imitation), a novel data-driven environment imitation
approach that efficiently generates accurate virtual environment models for CPS goal verification. We
specifically presented the ENVI process and its user parameters (e.g., model determinism, IL algorithms,
and validation criteria). ENVI requires only a few FOTs for training a virtual environment model instead
of conducting expensive FOTs many times. An accurate virtual environment model can be automatically
generated from the collected FOT logs by leveraging IL algorithms (i.e., BC, GAIL, and BCGAIL).

Finally, we conducted real CPS development and verification case studies to evaluate our novel
environment model generation approach ENVI empirically. We examined 1) the impact of ENVI user
parameters, 2) verification accuracy for seen CPS controllers, 3) model generation efficiency, 4) verifi-
cation accuracy for unseen CPS controllers, and 5) the effective seed log collection strategies of ENVI.
Based on the evaluation results, we validated that ENVI can efficiently generate accurate environment
models for CPS goal verification. Consequently, the cost of CPS goal verification could be reduced.

In addition to evaluating our approach, we tried to contribute to academia by providing a reusable
CPS experimental environment and an open CPS FOT dataset. We presented a physical experiment
environment called Platooning LEGOs, a model problem of platooning technology implemented using
LEGOs. In addition, using Platooning LEGQOs, we designed a reproducible case study to develop a
multi-controller CPS and performed its FOTs. The experiment environment and the collected FOT log

dataset were released on an open-source repository.

6.2 Discussion

This section discusses some open challenges and future research directions of the virtual environment
model generation for CPS goal verification.
First, sample efficiency is essential. This is because conducting FOTs to collect logs is the most

expensive task in the data-driven approach. In our experiments, the BCGAIL algorithm was the most

86



efficient in most cases. Using state-of-the-art techniques for increasing sample efficiency [52, 113] could
further help.

Second, it should be robust to noise in FOT logs. Many IL studies assume the correctness of the
expert demonstration [114, 60]. However, the expert in our problem is the real environment, so some
noise is inevitable in the demonstration data (e.g., due to sensor noise). Though we used noisy data
collected by the real CPSs in the experiments, systematically investigating the impact of noise was not in
the scope of our work. Nevertheless, as many studies have already considered the noise issue in machine
learning [115, 116], they could better guide how to address noisy FOT logs in ENVI.

Third, finding a proper level of abstraction for the complex environment is essential. We abstracted
the environment as a state-transition function in a closed-loop simulation and recast the model generation
problem as the IL problem (see chapter 3). This is a typical level of abstraction for the environment
modeling [27, 38]. However, this simple representation may not be sufficient for some domains. Therefore,
an extension of the environment model is an interesting future work. We can also refer to some IL studies
that imitate complex expert behaviors (e.g., multi-task or concurrent behavior) [117, 118].

Finally, a hybrid of data-driven and knowledge-based environment modeling can make the model
further effective. When a high-fidelity simulation engine is based on well-known principles in the CPS
domain, engineers can manually create an accurate virtual environment in the simulator. In contrast to
such knowledge-based environment modeling, ENVI is a data-driven approach in which only a few seed
logs are required to automatically generate an accurate virtual environment model. This is a massive
advantage in inferring complex environmental behavior from data. Therefore, ENVI can complement

the knowledge-based approach depending on the application domain.

87



1]
2]

3]

[9]

[10]

[11]

Bibliography

S. Levine, Lecture note of supervised learning of behaviors. cs 285, uc berkeley (May 2018).

D. Weyns, Software engineering of self-adaptive systems: an organised tour and future challenges,
Chapter in Handbook of Software Engineering (2017).

A. Filieri, M. Maggio, K. Angelopoulos, N. d'Ippolito, I. Gerostathopoulos, A. B. Hempel, H. Hoff-
mann, P. Jamshidi, E. Kalyvianaki, C. Klein, et al., Software engineering meets control theory,
in: 2015 IEEE/ACM 10th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, IEEE, 2015, pp. 71-82.

R. Baheti, H. Gill, Cyber-physical systems, The impact of control technology 12 (1) (2011) 161-166.

D. An, J. Liu, M. Zhang, X. Chen, M. Chen, H. Sun, Uncertainty modeling and runtime verification
for autonomous vehicles driving control: A machine learning-based approach, Journal of Systems
and Software 167 (2020) 110617. doi:https://doi.org/10.1016/j.jss.2020.110617.

URL https://wuw.sciencedirect.com/science/article/pii/S0164121220300959

G. E. Mullins, P. G. Stankiewicz, R. C. Hawthorne, S. K. Gupta, Adaptive generation of challenging
scenarios for testing and evaluation of autonomous vehicles, Journal of Systems and Software 137
(2018) 197-215. doi:https://doi.org/10.1016/7.jss.2017.10.031.

URL https://www.sciencedirect.com/science/article/pii/S0164121217302546

D. Bozhinoski, D. Di Ruscio, I. Malavolta, P. Pelliccione, I. Crnkovic, Safety for mobile robotic
systems: A systematic mapping study from a software engineering perspective, Journal of Systems
and Software 151 (2019) 150-179. doi:https://doi.org/10.1016/j.jss.2019.02.021.

URL https://www.sciencedirect.com/science/article/pii/S0164121219300317

A. Ahmad, M. A. Babar, Software architectures for robotic systems: A systematic mapping study,
Journal of Systems and Software 122 (2016) 16-39. doi:https://doi.org/10.1016/j.jss.2016.
08.039.

URL https://www.sciencedirect.com/science/article/pii/S0164121216301479

Y.-R. Shiue, K.-C. Lee, C.-T. Su, Real-time scheduling for a smart factory using a reinforcement
learning approach, Computers & Industrial Engineering 125 (2018) 604-614. doi:https://doi.
org/10.1016/j.cie.2018.03.039.

URL https://www.sciencedirect.com/science/article/pii/S036083521830130X

W. Wang, Y. Zhang, J. Gu, J. Wang, A proactive manufacturing resources assignment method
based on production performance prediction for the smart factory, IEEE Transactions on Industrial
Informatics 18 (1) (2022) 46-55. doi:10.1109/TII.2021.3073404.

M. Zema, S. Rosati, V. Gioia, M. Knaflitz, G. Balestra, Developing medical device software in com-
pliance with regulations, in: 2015 37th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), 2015, pp. 1331-1334. doi:10.1109/EMBC.2015.7318614.

88


https://www.sciencedirect.com/science/article/pii/S0164121220300959
https://www.sciencedirect.com/science/article/pii/S0164121220300959
https://doi.org/https://doi.org/10.1016/j.jss.2020.110617
https://www.sciencedirect.com/science/article/pii/S0164121220300959
https://www.sciencedirect.com/science/article/pii/S0164121217302546
https://www.sciencedirect.com/science/article/pii/S0164121217302546
https://doi.org/https://doi.org/10.1016/j.jss.2017.10.031
https://www.sciencedirect.com/science/article/pii/S0164121217302546
https://www.sciencedirect.com/science/article/pii/S0164121219300317
https://www.sciencedirect.com/science/article/pii/S0164121219300317
https://doi.org/https://doi.org/10.1016/j.jss.2019.02.021
https://www.sciencedirect.com/science/article/pii/S0164121219300317
https://www.sciencedirect.com/science/article/pii/S0164121216301479
https://doi.org/https://doi.org/10.1016/j.jss.2016.08.039
https://doi.org/https://doi.org/10.1016/j.jss.2016.08.039
https://www.sciencedirect.com/science/article/pii/S0164121216301479
https://www.sciencedirect.com/science/article/pii/S036083521830130X
https://www.sciencedirect.com/science/article/pii/S036083521830130X
https://doi.org/https://doi.org/10.1016/j.cie.2018.03.039
https://doi.org/https://doi.org/10.1016/j.cie.2018.03.039
https://www.sciencedirect.com/science/article/pii/S036083521830130X
https://doi.org/10.1109/TII.2021.3073404
https://doi.org/10.1109/EMBC.2015.7318614

[12]

[13]

[15]

[16]

[17]

[18]

[19]

[23]

[24]

[25]

K. Fu, Trustworthy medical device software, Public Health Effectiveness of the FDA 510 (2011)
102.

D. Weyns, An Introduction to Self-adaptive Systems: A Contemporary Software Engineering Per-
spective, John Wiley & Sons, 2020.

A. J. Ramirez, A. C. Jensen, B. H. Cheng, A taxonomy of uncertainty for dynamically adaptive
systems, in: 2012 7th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), IEEE, 2012, pp. 99-108.

R. De Lemos, H. Giese, H. A. Miiller, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl, G. Tamura,
N. M. Villegas, T. Vogel, et al., Software engineering for self-adaptive systems: A second research

roadmap, in: Software Engineering for Self-Adaptive Systems II, Springer, 2013, pp. 1-32.

C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, J. Peleska, Systems of systems engineering:
basic concepts, model-based techniques, and research directions, ACM Computing Surveys (CSUR)
48 (2) (2015) 18.

Y.-M. Baek, J. Song, Y.-J. Shin, S. Park, D.-H. Bae, A meta-model for representing system-of-
systems ontologies, in: 2018 IEEE/ACM 6th International Workshop on Software Engineering for
Systems-of-Systems (SESoS), IEEE, 2018, pp. 1-7.

D. Seo, D. Shin, Y.-M. Baek, J. Song, W. Yun, J. Kim, E. Jee, D.-H. Bae, Modeling and verification
for different types of system of systems using prism, in: Proceedings of the 4th International

Workshop on Software Engineering for Systems-of-Systems, ACM, 2016, pp. 12-18.

Y.-J. Shin, S. Hyun, Y.-M. Baek, D.-H. Bae, Spectrum-based fault localization on a collaboration
graph of a system-of-systems, in: 2019 14th Annual Conference System of Systems Engineering
(SoSE), IEEE, 2019, pp. 358-363.

M. J. de C Henshaw, Systems of systems, cyber-physical systems, the internet-of-things. .. whatever
next?, Insight 19 (3) (2016) 51-54.

C. Guariniello, A. K. Raz, Z. Fang, D. DeLaurentis, System-of-systems tools and techniques for
the analysis of cyber-physical systems, Systems Engineering 23 (4) (2020) 480-491.

J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, J.-M. Bruel, Relax: a language to address
uncertainty in self-adaptive systems requirement, Requirements Engineering 15 (2) (2010) 177-
196.

Y .-J. Shin, L. Liu, S. Hyun, D.-H. Bae, Platooning legos: An open physical exemplar for engineering
self-adaptive cyber-physical systems-of-systems, in: 2021 International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), IEEE, 2021, pp. 231-237.

Z. Ding, Y. Zhou, M. Zhou, Modeling self-adaptive software systems with learning petri nets, IEEE
Transactions on Systems, Man, and Cybernetics: Systems 46 (4) (2015) 483-498.

Y.-J. Shin, Y.-M. Baek, E. Jee, D.-H. Bae, Data-driven environment modeling for adaptive system-
of-systems, in: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, 2019,
pp. 2044-2047.

89



[26]

[27]

[28]

[29]

E. M. Fredericks, B. DeVries, B. H. Cheng, Towards run-time adaptation of test cases for self-
adaptive systems in the face of uncertainty, in: Proceedings of the 9th International Symposium

on Software Engineering for Adaptive and Self-Managing Systems, 2014, pp. 17-26.

Y. Qin, C. Xu, P. Yu, J. Lu, Sit: Sampling-based interactive testing for self-adaptive apps, Journal
of Systems and Software 120 (2016) 70-88.

D. Sykes, D. Corapi, J. Magee, J. Kramer, A. Russo, K. Inoue, Learning revised models for
planning in adaptive systems, in: 2013 35th International Conference on Software Engineering
(ICSE), IEEE, 2013, pp. 63-71.

Y .-J. Shin, E. Cho, D.-H. Bae, Pasta: An efficient proactive adaptation approach based on statis-
tical model checking for self-adaptive systems, Fundamental Approaches to Software Engineering
12649 (2021) 292.

D. Budgen, P. Brereton, Performing systematic literature reviews in software engineering, in: Pro-

ceedings of the 28th international conference on Software engineering, 2006, pp. 1051-1052.

Z. Stapic, E. G. Lépez, A. G. Cabot, L. de Marcos Ortega, V. Strahonja, Performing systematic
literature review in software engineering, in: Central European Conference on Information and

Intelligent Systems, Faculty of Organization and Informatics Varazdin, 2012, p. 441.

S. Keele, et al., Guidelines for performing systematic literature reviews in software engineering,
Tech. rep., Citeseer (2007).

C. Wohlin, Guidelines for snowballing in systematic literature studies and a replication in software
engineering, in: Proceedings of the 18th international conference on evaluation and assessment in

software engineering, 2014, pp. 1-10.

M. Salehie, L. Tahvildari, Self-adaptive software: Landscape and research challenges, ACM trans-
actions on autonomous and adaptive systems (TAAS) 4 (2) (2009) 1-42.

S. Monpratarnchai, T. Tetsuo, Applying adaptive role-based model to self-adaptive system con-
structing problems: a case study, in: 2011 Eighth IEEE International Conference and Workshops
on Engineering of Autonomic and Autonomous Systems, IEEE, 2011, pp. 69-78.

J. Van Der Donckt, D. Weyns, M. U. Iftikhar, S. S. Buttar, Effective decision making in self-
adaptive systems using cost-benefit analysis at runtime and online learning of adaptation spaces,
in: International Conference on Evaluation of Novel Approaches to Software Engineering, Springer,
2018, pp. 373-403.

G. F. Solano, R. D. Caldas, G. N. Rodrigues, T. Vogel, P. Pelliccione, Taming uncertainty in
the assurance process of self-adaptive systems: a goal-oriented approach, in: 2019 IEEE/ACM
14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), TEEE, 2019, pp. 89-99.

A. Reichstaller, A. Knapp, Risk-based testing of self-adaptive systems using run-time predic-
tions, in: 2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems
(SASO), 2018, pp. 80-89. doi:10.1109/SAS0.2018.00019.

90


https://doi.org/10.1109/SASO.2018.00019

[39]

[45]

[49]

W. Yang, C. Xu, Y. Liu, C. Cao, X. Ma, J. Lu, Verifying self-adaptive applications suffering
uncertainty, in: Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering, ASE 14, Association for Computing Machinery, New York, NY, USA, 2014,
p- 199-210. doi:10.1145/2642937.2642999.

URL https://doi.org/10.1145/2642937.2642999

M. Tanabe, K. Tei, Y. Fukazawa, S. Honiden, Learning environment model at runtime for self-

adaptive systems, in: Proceedings of the Symposium on Applied Computing, 2017, pp. 1198-1204.

J. Cdmara, W. Peng, D. Garlan, B. Schmerl, Reasoning about sensing uncertainty in decision-
making for self-adaptation, in: A. Cerone, M. Roveri (Eds.), Software Engineering and Formal
Methods, Springer International Publishing, Cham, 2018, pp. 523-540.

G. A. Moreno, J. Camara, D. Garlan, B. Schmerl, Flexible and efficient decision-making for
proactive latency-aware self-adaptation, ACM Trans. Auton. Adapt. Syst. 13 (1) (apr 2018).
doi:10.1145/3149180

URL https://doi.org/10.1145/3149180

R. S. Sutton, A. G. Barto, et al., Introduction to reinforcement learning, Vol. 135, MIT press
Cambridge, 1998.

S. A. Safdar, T. Yue, S. Ali, H. Lu, Evaluating variability modeling techniques for supporting
cyber-physical system product line engineering, in: International Conference on System Analysis

and Modeling, Springer, 2016, pp. 1-19.

A. Hussein, M. M. Gaber, E. Elyan, C. Jayne, Imitation learning: A survey of learning methods,
ACM Comput. Surv. 50 (2) (apr 2017). doi:10.1145/3054912.
URL https://doi.org/10.1145/3054912

O. Michel, Cyberbotics 1td. webots™: Professional mobile robot simulation, International Journal
of Advanced Robotic Systems 1 (1) (2004) 5. doi:10.5772/5618.

N. Koenig, A. Howard, Design and use paradigms for gazebo, an open-source multi-robot simulator,
in: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE
Cat. No.04CH37566), Vol. 3, 2004, pp. 2149-2154 vol.3. doi:10.1109/IR0S.2004.1389727.

S. Schaal, Learning from demonstration, in: Advances in Neural Information Processing Systems,
1996, pp. 1040-1046.
URL http://papers.nips.cc/paper/1224-learning-from-demonstration

B. D. Argall, S. Chernova, M. Veloso, B. Browning, A survey of robot learning from demonstration,
Robotics and Autonomous Systems 57 (5) (2009) 469-483. doi:https://doi.org/10.1016/7.
robot.2008.10.024.

URL https://wuw.sciencedirect.com/science/article/pii/S0921889008001772

J. Ho, S. Ermon, Generative adversarial imitation learning, in: Proceedings of the 30th Interna-
tional Conference on Neural Information Processing Systems, NIPS’16, Curran Associates Inc.,
Red Hook, NY, USA, 2016, p. 4572—4580.

91


https://doi.org/10.1145/2642937.2642999
https://doi.org/10.1145/2642937.2642999
https://doi.org/10.1145/2642937.2642999
https://doi.org/10.1145/2642937.2642999
https://doi.org/10.1145/3149180
https://doi.org/10.1145/3149180
https://doi.org/10.1145/3149180
https://doi.org/10.1145/3149180
https://doi.org/10.1145/3054912
https://doi.org/10.1145/3054912
https://doi.org/10.1145/3054912
https://doi.org/10.5772/5618
https://doi.org/10.1109/IROS.2004.1389727
http://papers.nips.cc/paper/1224-learning-from-demonstration
http://papers.nips.cc/paper/1224-learning-from-demonstration
https://www.sciencedirect.com/science/article/pii/S0921889008001772
https://doi.org/https://doi.org/10.1016/j.robot.2008.10.024
https://doi.org/https://doi.org/10.1016/j.robot.2008.10.024
https://www.sciencedirect.com/science/article/pii/S0921889008001772

[51]

[62]

[63]

[64]

J. Ho, S. Ermon, Generative adversarial imitation learning, in: Proceedings of the 30th Interna-
tional Conference on Neural Information Processing Systems, NIPS’16, Curran Associates Inc.,
Red Hook, NY, USA, 2016, p. 4572-4580.

R. Jena, C. Liu, K. Sycara, Augmenting gail with bc for sample efficient imitation learning, arXiv
(2020). arXiv:2001.07798,

L. D. Xu, L. Duan, Big data for cyber physical systems in industry 4.0: a survey, Enterprise
Information Systems 13 (2) (2019) 148-169. doi:10.1080/17517575.2018.1442934.

M. Rafig, G. Bugmann, D. Easterbrook, Neural network design for engineering applications, Com-
puters & Structures 79 (17) (2001) 1541-1552. doi:https://doi.org/10.1016/S0045-7949(01)
00039-6.

URL https://www.sciencedirect.com/science/article/pii/S0045794901000396

A. Schilling, C. Metzner, J. Rietsch, R. Gerum, H. Schulze, P. Krauss, How deep is deep enough?
— quantifying class separability in the hidden layers of deep neural networks, arXiv (2019). arXiv:
1811.01753.

D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv (2017). arXiv:1412.
6980.

R. S. Sutton, D. McAllester, S. Singh, Y. Mansour, Policy gradient methods for reinforcement learn-

ing with function approximation, Advances in neural information processing systems 12 (1999).

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy optimization algo-
rithms, arXiv (2017). arXiv:1707.06347.

Z. Guan, T. Xu, Y. Liang, When will generative adversarial imitation learning algorithms attain
global convergence, in: International Conference on Artificial Intelligence and Statistics, PMLR,
2021, pp. 1117-1125.

X. B. Peng, P. Abbeel, S. Levine, M. van de Panne, Decpmimic: Example-guided deep re-
inforcement learning of physics-based character skills;, ACM Trans. Graph. 37 (4) (jul 2018).
doi:10.1145/3197517.3201311.

URL https://doi.org/10.1145/3197517.3201311

A. Abanda, U. Mori, J. A. Lozano, A review on distance based time series classification, Data
Mining and Knowledge Discovery 33 (2) (2019) 378-412.

A. Legay, B. Delahaye, S. Bensalem, Statistical model checking: An overview, in: International

conference on runtime verification, Springer, 2010, pp. 122-135.

T. Bures, D. Weyns, B. Schmer, E. Tovar, E. Boden, T. Gabor, I. Gerostathopoulos, P. Gupta,
E. Kang, A. Knauss, et al., Software engineering for smart cyber-physical systems: Challenges and
promising solutions, ACM SIGSOFT Software Engineering Notes 42 (2) (2017) 19-24.

S. Engell, R. Paulen, M. A. Reniers, C. Sonntag, H. Thompson, Core research and innovation
areas in cyber-physical systems of systems, in: International Workshop on Design, Modeling, and

Evaluation of Cyber Physical Systems, Springer, 2015, pp. 40-55.

92


http://arxiv.org/abs/2001.07798
https://doi.org/10.1080/17517575.2018.1442934
https://www.sciencedirect.com/science/article/pii/S0045794901000396
https://doi.org/https://doi.org/10.1016/S0045-7949(01)00039-6
https://doi.org/https://doi.org/10.1016/S0045-7949(01)00039-6
https://www.sciencedirect.com/science/article/pii/S0045794901000396
http://arxiv.org/abs/1811.01753
http://arxiv.org/abs/1811.01753
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1707.06347
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/3197517.3201311

[65]

[67]

[69]

[71]

[73]

M. Kit, I. Gerostathopoulos, T. Bures, P. Hnetynka, F. Plasil, An architecture framework for ex-
perimentations with self-adaptive cyber-physical systems, in: 2015 IEEE/ACM 10th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), IEEE,
2015, pp. 93-96.

S. Gerasimou, R. Calinescu, S. Shevtsov, D. Weyns, Undersea: an exemplar for engineering self-
adaptive unmanned underwater vehicles, in: 2017 IEEE/ACM 12th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS), IEEE, 2017, pp. 83-89.

M. U. Iftikhar, G. S. Ramachandran, P. Bollansée, D. Weyns, D. Hughes, Deltaiot: A self-adaptive
internet of things exemplar, in: 2017 IEEE/ACM 12th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), IEEE, 2017, pp. 76-82.

F. Krijt, Z. Jiracek, T. Bures, P. Hnetynka, I. Gerostathopoulos, Intelligent ensembles-a declarative
group description language and java framework, in: 2017 IEEE/ACM 12th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), IEEE, 2017, pp.
116-122.

M. Provoost, D. Weyns, Dingnet: a self-adaptive internet-of-things exemplar, in: 2019 IEEE/ACM
14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), IEEE, 2019, pp. 195-201.

J. Wuttke, Y. Brun, A. Gorla, J. Ramaswamy, Traffic routing for evaluating self-adaptation, in:
2012 7th International Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS), IEEE, 2012, pp. 27-32.

I. Gerostathopoulos, E. Pournaras, Trapped in traffic? a self-adaptive framework for decentralized
traffic optimization, in: 2019 IEEE/ACM 14th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), IEEE, 2019, pp. 32-38.

P. H. Maia, L. Vieira, M. Chagas, Y. Yu, A. Zisman, B. Nuseibeh, Dragonfly: a tool for simulating
self-adaptive drone behaviours, in: 2019 IEEE/ACM 14th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), IEEE, 2019, pp. 107-113.

G. Moreno, C. Kinneer, A. Pandey, D. Garlan, Dartsim: an exemplar for evaluation and comparison
of self-adaptation approaches for smart cyber-physical systems, in: 2019 IEEE/ACM 14th Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS),
IEEE, 2019, pp. 181-187.

A. Bennaceur, C. McCormick, J. Garcia-Galdn, C. Perera, A. Smith, A. Zisman, B. Nuseibeh,
Feed me, feed me: an exemplar for engineering adaptive software, in: 2016 IEEE/ACM 11th Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS),
IEEE, 2016, pp. 89-95.

C. Bergenhem, S. Shladover, E. Coelingh, C. Englund, S. Tsugawa, Overview of platooning systems,
in: Proceedings of the 19th ITS World Congress, Oct 22-26, Vienna, Austria (2012), 2012.

D. Martinec, Z. Hurdk, Vehicular platooning experiments with lego mindstorms nxt, in: 2011 IEEE
International Conference on Control Applications (CCA), IEEE, 2011, pp. 927-932.

93



[77]

[81]

[82]

[89]

E. Kita, H. Sakamoto, H. Takaue, M. Yamada, Robot vehicle platoon experiment based on multi-
leader vehicle following model, in: 2014 Second International Symposium on Computing and Net-
working, ITEEE, 2014, pp. 491-494.

E. Kita, M. Yamada, Vehicle velocity control in case of vehicle platoon merging, in: 2019 4th
International Conference on Intelligent Transportation Engineering (ICITE), IEEE, 2019, pp. 340—
344.

J. O. Kephart, D. M. Chess, The vision of autonomic computing, Computer 36 (1) (2003) 41-50.

D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J. Wuttke, J. Anders-
son, H. Giese, K. M. Géschka, On patterns for decentralized control in self-adaptive systems, in:

Software Engineering for Self-Adaptive Systems II, Springer, 2013, pp. 76-107.

A. Abunei, C. R. Comsa, C. F. Caruntu, I. Bogdan, Redundancy based v2v communication plat-
form for vehicle platooning, in: 2019 International Symposium on Signals, Circuits and Systems
(ISSCS), IEEE, 2019, pp. 1-4.

S. Shevtsov, D. Weyns, M. Maggio, Simca* a control-theoretic approach to handle uncertainty in
self-adaptive systems with guarantees, ACM Transactions on Autonomous and Adaptive Systems
(TAAS) 13 (4) (2019) 1-34.

R. D. Caldas, A. Rodrigues, E. B. Gil, G. N. Rodrigues, T. Vogel, P. Pelliccione, A hybrid ap-
proach combining control theory and ai for engineering self-adaptive systems, in: Proceedings of
the IEEE/ACM 15th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, 2020, pp. 9-19.

M. Lee, K. Lee, C. Kim, J. Lee, Analytical design of multiloop pid controllers for desired closed-loop
responses, AIChE Journal 50 (7) (2004) 1631-1635.

L. Zhang, Applying system of systems engineering approach to build complex cyber physical sys-
tems, in: Progress in Systems Engineering, Springer, 2015, pp. 621-628.

Y. Barnard, O. Carsten, Field operational tests: challenges and methods, in: Proceedings of
European Conference on Human Centred Design for Intelligent Transport Systems, Eds edn. HU-
MANIST publications, Lyon, 2010, pp. 323-332.

R. Alur, Principles of cyber-physical systems, MIT press, 2015.

T. Patikirikorala, A. Colman, J. Han, L. Wang, A systematic survey on the design of self-adaptive
software systems using control engineering approaches, in: 2012 7th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS), IEEE, 2012, pp. 33-42.

S. Shevtsov, D. Weyns, Keep it simplex: Satisfying multiple goals with guarantees in control-based
self-adaptive systems, in: Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016, pp. 229-241.

A. Filieri, M. Maggio, K. Angelopoulos, N. D’ippolito, I. Gerostathopoulos, A. B. Hempel, H. Hoff-
mann, P. Jamshidi, E. Kalyvianaki, C. Klein, et al., Control strategies for self-adaptive software
systems, ACM Transactions on Autonomous and Adaptive Systems (TAAS) 11 (4) (2017) 1-31.

94



[91]

[93]

[95]

[96]

[101]

[102]

[103]

[104]

[105]

[106]

R. De Lemos, D. Garlan, C. Ghezzi, H. Giese, J. Andersson, M. Litoiu, B. Schmerl, D. Weyns,
L. Baresi, N. Bencomo, et al., Software engineering for self-adaptive systems: Research challenges
in the provision of assurances, in: Software Engineering for Self-Adaptive Systems III. Assurances,
Springer, 2017, pp. 3-30.

M. Litoiu, M. Shaw, G. Tamura, N. M. Villegas, H. A. Miiller, H. Giese, R. Rouvoy, E. Rutten,
What can control theory teach us about assurances in self-adaptive software systems?, in: Software

Engineering for Self-Adaptive Systems III. Assurances, Springer, 2017, pp. 90-134.

J. Camara, A. V. Papadopoulos, T. Vogel, D. Weyns, D. Garlan, S. Huang, K. Tei, Towards bridg-
ing the gap between control and self-adaptive system properties, in: Proceedings of the IEEE/ACM
15th International Symposium on Software Engineering for Adaptive and Self-Managing Systems,
2020, pp. 78-84.

J. C. Doyle, B. A. Francis, A. R. Tannenbaum, Feedback control theory, Courier Corporation,
2013.

T. Cherrett, D. Pitfield, Extracting driving characteristics from heavy goods vehicle tachograph
charts, Transportation Planning and Technology 24 (4) (2001) 349-363.

N. Bencomo, Quantun: Quantification of uncertainty for the reassessment of requirements, in: 2015
IEEE 23rd International Requirements Engineering Conference (RE), IEEE, 2015, pp. 236-240.

N. Bencomo, A. Belaggoun, A world full of surprises: Bayesian theory of surprise to quantify de-
grees of uncertainty, in: Companion Proceedings of the 36th International Conference on Software
Engineering, 2014, pp. 460—463.

R. Al-Ali, L. Bulej, J. Kofron, T. Bures, A guide to design uncertainty-aware self-adaptive compo-
nents in cyber—physical systems, Future Generation Computer Systems 128 (2022) 466-489.

S. Bandaru, A. H. Ng, K. Deb, Data mining methods for knowledge discovery in multi-objective
optimization: Part a-survey, Expert Systems with Applications 70 (2017) 139-159.

X. Fei, N. Shah, N. Verba, K.-M. Chao, V. Sanchez-Anguix, J. Lewandowski, A. James, Z. Usman,
Cps data streams analytics based on machine learning for cloud and fog computing: A survey,

Future generation computer systems 90 (2019) 435-450.
W. W. Wei, Multivariate time series analysis and applications, John Wiley & Sons, 2018.

J. M. Joyce, Kullback-leibler divergence, in: International encyclopedia of statistical science,
Springer, 2011, pp. 720-722.

Y. Tsurumine, Y. Cui, K. Yamazaki, T. Matsubara, Generative adversarial imitation learning with
deep p-network for robotic cloth manipulation, in: 2019 IEEE-RAS 19th International Conference
on Humanoid Robots (Humanoids), IEEE, 2019, pp. 274-280.

X. Zhang, Y. Li, X. Zhou, J. Luo, Cgail: Conditional generative adversarial imitation learning—an

application in taxi drivers’ strategy learning, IEEE Transactions on Big Data (2020).
E. Ostertagova, Modelling using polynomial regression, Procedia Engineering 48 (2012) 500-506.

M. R. Segal, Machine learning benchmarks and random forest regression (2004).

95



[107] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
E. Duchesnay, Scikit-learn: Machine learning in Python, Journal of Machine Learning Research 12
(2011) 2825-2830.

[108] E. M. Fredericks, Automatically hardening a self-adaptive system against uncertainty, in: 2016
IEEE/ACM 11th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), IEEE, 2016, pp. 16-27.

[109] W. Yang, C. Xu, M. Pan, C. Cao, X. Ma, J. Lu, Journal of Systems and Software 138 (2018)
82-99. doi:https://doi.org/10.1016/j.jss.2017.12.009, [link].
URL https://www.sciencedirect.com/science/article/pii/S0164121217303023

[110] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch: An Imperative Style, High-Performance Deep
Learning Library, Curran Associates Inc., Red Hook, NY, USA, 2019, pp. 8026-8037.

[111] Intelligent transport systems — lane keeping assistance systems (lkas) — performance requirements

and test procedures, Standard, International Organization for Standardization (May 2014).

[112] Intelligent transport systems — adaptive cruise control systems — performance requirements and

test procedures, Standard, International Organization for Standardization (2018).

[113] X. Zhang, Y. Li, Z. Zhang, Z.-L. Zhang, {-gail: Learning {-divergence for generative adversarial im-
itation learning, in: H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, H. Lin (Eds.), Advances
in Neural Information Processing Systems, Vol. 33, Curran Associates, Inc., 2020, pp. 12805-12815.
URL https://proceedings.neurips.cc/paper/2020/£file/967990de5b3eac7b87d49a13c6834978-Paper.
pdf

[114] M. Abdou, H. Kamal, S. El-Tantawy, A. Abdelkhalek, O. Adel, K. Hamdy, M. Abaas, End-to-end
deep conditional imitation learning for autonomous driving, in: 2019 31st International Conference
on Microelectronics (ICM), 2019, pp. 346-350. doi:10.1109/ICM48031.2019.9021288.

[115] S. Gupta, A. Gupta, Dealing with noise problem in machine learning data-sets: A systematic re-
view, Procedia Computer Science 161 (2019) 466-474, the Fifth Information Systems International
Conference, 23-24 July 2019, Surabaya, Indonesia. doi:https://doi.org/10.1016/j.procs.
2019.11.146.

URL https://www.sciencedirect.com/science/article/pii/S1877050919318575

[116] Z. Zeng, Y. Liu, W. Tang, F. Chen, Noise is useful: Exploiting data diversity for edge intelligence,
IEEE Wireless Communications Letters 10 (5) (2021) 957-961. doi:10.1109/LWC.2021.3051688.

[117] S. Agrawal, M. van de Panne, Task-based locomotion, ACM Trans. Graph. 35 (4) (jul 2016).
doi:10.1145/2897824.2925893.
URL https://doi.org/10.1145/2897824.2925893

[118] A. Singh, E. Jang, A. Irpan, D. Kappler, M. Dalal, S. Levinev, M. Khansari, C. Finn, Scalable
multi-task imitation learning with autonomous improvement, in: 2020 IEEE International Confer-
ence on Robotics and Automation (ICRA), 2020, pp. 2167-2173. doi:10.1109/ICRA40945.2020.
9197020.

96


https://doi.org/https://doi.org/10.1016/j.jss.2017.12.009
https://www.sciencedirect.com/science/article/pii/S0164121217303023
https://www.sciencedirect.com/science/article/pii/S0164121217303023
https://proceedings.neurips.cc/paper/2020/file/967990de5b3eac7b87d49a13c6834978-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/967990de5b3eac7b87d49a13c6834978-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/967990de5b3eac7b87d49a13c6834978-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/967990de5b3eac7b87d49a13c6834978-Paper.pdf
https://doi.org/10.1109/ICM48031.2019.9021288
https://www.sciencedirect.com/science/article/pii/S1877050919318575
https://www.sciencedirect.com/science/article/pii/S1877050919318575
https://doi.org/https://doi.org/10.1016/j.procs.2019.11.146
https://doi.org/https://doi.org/10.1016/j.procs.2019.11.146
https://www.sciencedirect.com/science/article/pii/S1877050919318575
https://doi.org/10.1109/LWC.2021.3051688
https://doi.org/10.1145/2897824.2925893
https://doi.org/10.1145/2897824.2925893
https://doi.org/10.1145/2897824.2925893
https://doi.org/10.1109/ICRA40945.2020.9197020
https://doi.org/10.1109/ICRA40945.2020.9197020

Acknowledgments in Korean

A o] upak g2 7 SH4l shbazl 9 SYUTh AA S B3 A
AE S0l o717k 7 AU FAR S o] AHE s mshyo et
7hka) glol Wtk shbd Be 2Alofeh ok @t A FoA BU woeel - AW 467 108,
SFF AL D 4 USF w3 B ARHTA B B A4

A7ze] AAE 7tA FAD 2 5 A
g WoIFA T Al FHA o]
WL A7} =S A4
Azl el AZksHA shAl

i

J

2ot
o
fu
>,
I

ot
sy
oy o2

¥ ox
oo
= 4

filo
O

ot
el

o

Sk

[e)
o
il'e
2
>
%
N
R
kl
e,
of
El
&
gL
nj
o
)
ol
ol
do
re
|
N)

2~
T

gE
re
e
Y
H1
2L
offt 10
2 e
N o
ku

i
o -
ol
okt
rlr
rx
=)
re

AT BIVE WEe] AL @

B4UEe] AR 97 o Al Aol

1
(*]

H

i
o

P e

Az
>
i)
2
il
2
o A
o
e,
o
wt
N
=hy
29
rfo
re
-
)
-
ox,
e =
il
=)
>
il
iw
i
re
-
It
4
o,
31=)
ol FIO
&l
rEl
o
ot
X
ol

ARt HES w25 g

1

HN 3O
o,

2% A74 4TS B
=% A2 Aelola djels)
CelISS t2AE b

A T

FN
offt
N
4
r[]
©
ofly
oy
>,
=)
A
L
52
Mo
©
o

o oL

N

N
>
k
i
4o
i)
o,
ol
2
58
rlo
c
Sl

\z

il
o

ol

o} o
>,

&

i
Rui)

o
%9,
Y
1o
do
=]
o,
o
jm}
=)
kil
2
-
N
Hu
o
i
(o]
e
N
o rr re
n
)

4 9

ol
oz
A
Y
ol
ol,
=)
il
Y
)
é"
4N
kil
=)
Mo
k]
g
fle
v
4
i)
L)
>
i)
2
!
o
X,

2ol
=
R
of,
qr
i
oy
>
i)
=)
=
ftlo
=
ful
pan)
o

A GolA R o) el & ASE 4 ULE
EZ ) o Autold Aol

2 wet 943l E 42, 538, 517)
Lingjun, Anthony, May T84 ch. o] 8bAL 519] =-2] & el7} 9
St A URE A A7HLT, oAl Hew dFos Bal

2ol
)
oy
>
o
i
NS NNV
[
o
Kl
4z
BN
sk
2o
=
lo,
r
|
B
ki

fob HN -
Rl
i)

uld, @4 4o ngsyTh A0 25T A7kl B TS T ol R5o] erdo] BE g
Aws Gy
o] 7| Be A3 o} & F1EQ FHEEol7 AARRUTE $4 Aes] Aobrletn A

AoFn £ W LAY
seje e AAsv
|37 BE 35S 71 Aol A
71 2oz, vt 24z,
LA GolA B4
2 Utk shstes A48 Aok olgolat gl Hoj A A
TR, oAl A 9 44 o] BAGY gore] dHNE AFAAAY AAL BRI
A e,

)

==

97



Curriculum Vitae

Name : Yong-Jun Shin

Date of Birth : June 01, 1994

Birthplace . Republic of Korea

Educations

2010. 3. —2013. 2. Dongsan Christian High School

2013. 3. - 2017. 2. Handong Global University (BS)

2017. 3. -2023. 2.  Korea Advanced Institute of Science and Technology (KAIST) (Ph.D.)

Publications

Yong-Jun Shin, Donghwan Shin, Doo-Hwan Bae. “Environment Imitation: Data-Driven Envi-
ronment Model Generation Using Imitation Learning for Efficient CPS Goal Verification.” arXiv
preprint arXiv:2204.06799 (2022).

Esther Cho, Yong-Jun Shin, Sangwon Hyun, Hansu Kim, Doo-Hwan Bae. “Automatic Generation
of Metamorphic Relations for a Cyber-Physical System-of-Systems Using Genetic Algorithm.” 29th
Asia-Pacific Software Engineering Conference (APSEC), 2022

Yong-Jun Shin, Esther Cho, Hansu Kim, Doo-Hwan Bae. “Hands-On Field Operational Test
Dataset of a Multi-Controller CPS: A Modeled Case Study on Autonomous Driving.” 17th Annual
System of Systems Engineering Conference (SoSE), 2022.

Yong-Jun Shin, Joon-Young Bae, Doo-Hwan Bae. “Concepts and Models of Environment of Self-
Adaptive Systems: A Systematic Literature Review,” 2021 28th Asia-Pacific Software Engineering
Conference (APSEC), 2021, pp. 296-305

Young-Min Baek, Eunho Cho, Yong-Jun Shin, Doo-Hwan Bae. “A Modeling Method for Repre-
sentation of Geographical Information of a System-of-Systems.” 2021 16th International Conference
of System of Systems Engineering (SoSE). IEEE, 2021.

Seungchyul Shin, Sangwon Hyun, Yong-Jun Shin, Jiyoung Song, Doo-Hwan Bae. “Uncertainty
based Fault Type Identification for Fault Knowledge Base Generation in System of Systems.” 2021
16th International Conference of System of Systems Engineering (SoSE). IEEE, 2021.

Yong-Jun Shin, Lingjun Liu, Sangwon Hyun, Doo-Hwan Bae. ”Platooning LEGOs: An Open
Physical Exemplar for Engineering Self-Adaptive Cyber-Physical Systems-of-Systems.” 2021 Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS).
IEEE, 2021. Best Artifact Paper Award

Yong-Jun Shin, Eunho Cho, Doo-Hwan Bae. “PASTA: An efficient proactive adaptation ap-
proach based on statistical model checking for self-adaptive systems.” International Conference on

Fundamental Approaches to Software Engineering. Springer, Cham, 2021.

98



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Seungchyul Shin, Sangwon Hyun, Yong-Jun Shin, Jiyoung Song, Doo-Hwan Bae. “Manifesta-
tion Location-based Classification of Uncertainty Factors Considering Characteristics of System-of-
Systems.” KIISE Transactions on Computing Practices (2020): 451-457.

Sangwon Hyun, Yong-Jun Shin, Doo-Hwan Bae. “Analysis of Utilization Methods of the Statisti-
cal Model Checking Results for Localizing Faults on System of Systems.” Journal of KIISE (2020):
380-386.

Young-Min Baek, Zelalem Mihret, Yong-Jun Shin, Doo-Hwan Bae. “A Modeling Method for
Model-based Analysis and Design of a System-of-Systems.” 2020 27th Asia-Pacific Software Engi-
neering Conference (APSEC). IEEE, 2020.

Sumin Park, Yong-Jun Shin, Sangwon Hyun, Doo-Hwan Bae. “Simva-sos: Simulation-based
verification and analysis for system-of-systems.” 2020 IEEE 15th International Conference of System
of Systems Engineering (SoSE). IEEE, 2020.

Eunho Cho, Yong-Jun Shin, Eunkyoung Jee, Doo-Hwan Bae. “Comparative analysis of fault-
attack tree based safety and security assessment approaches.” Korea Software Congress (2019):
299-301.

Sangwon Hyun, Yong-Jun Shin, Doo-Hwan Bae. “Analysis of Utilization Methods of Statistical
Model Checking Results for Localizing Faults on System of Systems.” Korea Computer Congress
(2019): 380-386. Best Paper Award

Yong-Jun Shin, Sangwon Hyun, Young-Min Baek, Doo-Hwan Bae. ”Spectrum-based fault local-
ization on a collaboration graph of a system-of-systems.” 2019 14th Annual Conference System of
Systems Engineering (SoSE). IEEE, 2019.

Yong-Jun Shin, Sangwon Hyun, Young-Min Baek, Doo-Hwan Bae. “Data-driven environment
modeling for adaptive system-of-systems.” Proceedings of the 34th ACM/SIGAPP Symposium on
Applied Computing. 2019.

Young-Min Baek, Sumin Park, Yong-Jun Shin, Doo-Hwan Bae. “Analysis of Case Scenario to
Develop a System of Systems Meta-model for Ontology Representation.” Journal of KIISE (2018):
1056-1070.

Tae-Hwan Kim, Eunho Cho, Yong-Jun Shin, Doo-Hwan Bae. “Data-Driven Traffic Environment
System-Dynamics Model Generation & Inference Method.” Korea Software Congress (2018): 1725-
1727. Outstanding Paper Award

Young-Min Baek, Jiyoung Song, Yong-Jun Shin, Sumin Park, Doo-Hwan Bae. “A meta-model
for representing system-of-systems ontologies.” 2018 IEEE/ACM 6th International Workshop on
Software Engineering for Systems-of-Systems (SESoS). IEEE, 2018.

Yong-Jun Shin, Sumin Park, Young-Min Baek, Doo-Hwan Bae. “Scenario-based Analysis of
System-of-Systems Meta-model and Applicability Analysis for Statistical Verification.” 20th Korea
Conference on Software Engineering (2018): 1056-1070.

Young-Min Baek, Sumin Park, Yong-Jun Shin, Doo-Hwan Bae. “Development of Ontology-based
System-of-Systems Meta-model Based on the Analysis of SoS Case Scenario.” 20th Korea Conference
on Software Engineering (2018): 1056-1070. Best Paper Award

Do Hyun Kim, Jung Eun Kim, Ji Hag Song, Yong-Jun Shin, Sung Soo Hwang. “Image-based

Intelligent Surveillance System Using Unmanned Aircraft.” Journal of Korea Multimedia Society

99



20.3 (2017): 437-445.

23. Yong-Jun Shin, Jiyong Yang, Changbeom Choi. “Research on Flexible Method for Simulation
Initialization using C-Interpreter.” Korean Institute of Industrial Engineers (2015): 4255-4260.

100



